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ABSTRACT: With pressure monitoring of the transformer oil
tank, we can grasp the pressure change process caused by gas
production when serious internal defects occur, and take timely
measures to ensure the safe operation of the transformer.
Existing pressure sensors are generally metal-encapsulated or
with air chamber structure, which poses a threat to the
insulation of transformers if used directly inside. To this end,
this paper proposed a new insulation-friendly optical pressure
sensing method with temperature compensation. The fiber
grating was encapsulated with fluorosilicone rubber inside and
supplemented by an epoxy resin shielding shell on the outside.
At the same time, the proposed structure adopted the double
grating cross arrangement, which further improved the pressure
measurement sensitivity, and the pressure sensitivity reached
15pm/kPa while avoiding the interference of the temperature
rise. The results prove that the sensing structure is suitable for
all kinds of oil-immersed power equipment, and can operate
normally in a discharge environment, completely record the oil
pressure changes caused by the breakdown of the oil gap, and
sensitively sense small pressure changes in early failures.

KEY WORDS: transformer; oil pressure measurement; highly
sensitive optical sensing; temperature compensation
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Fig. 1 Half-section view of polymer-encapsulated
pressure-sensing structures
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Fig. 2 Schematic diagram of double grating cross layout
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Table 1 Comparison of field strength at
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When a serious defect occurs inside the transformer,
a large amount of gas will be generated. If it is not
handled in time, it may cause the oil tank to crack or
even catch fire and explode. Therefore, it is important to
monitor the pressure of the transformer oil tank. The
complex electromagnetic environment inside the
oil-immersed transformer places higher requirements on
the optical pressure sensor. Common optical fiber
pressure sensors generally use metal diaphragms as
pressure sensitive elements, or use silicon diaphragms to
form air cavity structures, which poses a potential threat
to transformer insulation.

This paper proposes a novel insulation-friendly
optical pressure sensing method, as shown in Fig. 1. The
fiber grating is encapsulated with fluorosilicone rubber
inside, and the shielding shell is made of epoxy resin
outside. There is a gap between the inside and outside, and

the connection block is used for connection and fixation.
(External) Epoxy

(Internal)

Fluorosilicone rubber

Connector

L

y
Fig. 1 Half-section view of polymer-encapsulated
pressure-sensing structures

The sensing structure cooperates with the double
grating vertical cross method, which further improves the
pressure measurement sensitivity while solving the
strain/temperature cross sensitivity. As shown in Fig. 2,
the measured sensitivity of the sensor is as high as
15pm/kPa.

The wavelength drift of the sensor caused by
temperature in the range of 45~125 s equivalent to the
pressure of about 0.4kPa on the sensor as shown in Fig. 3,
which is negligible in actual working conditions,
indicating that the adopted temperature compensation
method is effective.

Finally, the pressure waveform of oil gap
breakdown is measured by this sensor as shown in

S29

Fig. 4. The results show that the sensor can work
normally in the discharge environment and completely
record the pressure waveform caused by the

breakdown.
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