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Abstract—To enhance the resilience of power systems with
offshore wind farms (OWFs), a proactive scheduling scheme is
proposed to unlock the flexibility of cloud data centers (CDCs)
responding to uncertain spatial and temporal impacts induced
by hurricanes. The total life simulation (TLS) is adopted to
project the local weather conditions at transmission lines and
OWFs, before, during, and after the hurricane. The static power
curve of wind turbines (WTs) is used to capture the output of
OWFs, and the fragility analysis of transmission-line components
is used to formulate the time-varying failure rates of transmission
lines. A novel distributionally robust ambiguity set is constructed
with a discrete support set, where the impacts of hurricanes
are depicted by these supports. To minimize load sheddings
and dropping workloads, the spatial and temporal demand
response capabilities of CDCs according to task migration and
delay tolerance are incorporated into resilient management. The
flexibilities of CDC’s power consumption are integrated into
a two-stage distributionally robust optimization problem with
conditional value at risk (CVaR). Based on Lagrange duality,
this problem is reformulated into its deterministic counterpart
and solved by a novel decomposition method with hybrid cuts,
admitting fewer iterations and a faster convergence rate. The
effectiveness of the proposed resilient management strategy is
verified through case studies conducted on the modified IEEE-
RTS 24 system, which includes 4 data centers and 5 offshore
wind farms.

Index Terms—Cloud computing data center, decomposition,
hurricane, offshore wind farm, resilience enhancement, total life
simulation, unit commitment.

NOMENCLATURE

A. Indexes and Sets

t ∈ T Time interval set.
a ∈ T Time interval set when workloads are collected.
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e ∈ T Time interval set when workloads are processed.
w ∈ W Offshore wind farm set.
ij ∈ E Transmission line set.
l ∈ iij Tower set of transmission line ij.
k ∈ Kij Conductor segment set of transmission line ij.
ω ∈ Ω Scenario set.
P ∈ P Ambiguity set.
c ∈ C CDC set.
s ∈ C Source DC set where the workloads are collected.
k ∈ C Destination DC set where the workloads are

processed.
g ∈ G Generator set.
d ∈ D Demand set.
sk ∈ A Linkage path set among CDCs.

B. Constants

a1, a2, a3 Coefficients in the hurricane translation speed
model.

b1, b2, b3,
b4, b5

Coefficients in the hurricane heading direction
model.

c1, c2, c3 Coefficients in the hurricane intensity model.
RH Relative humidity.
es Saturation vapor pressure.
x Ratio of the minimum sustainable surface

value of central pressure to the surface value
of the partial pressure of ambient dry air.

d0, d1 Decay constants.
d Decay coefficient.
δ Coriolis parameter.
Ωr Earth rotation rate.
hz Gradient wind height.
αr Surface roughness.
R Radius of the rotor blades.
Cp Power conversion coefficient.
ρair Air density.
Vcut-in Cut-in wind speed.
Vrate Rated wind speed.
Vcut-out Cut-out wind speed.
Prate Rated power output of the wind turbine.
Nw The number of wind turbines in the wind farm.
τDRO Total distance tolerance.
ηu CPU utilization of servers.
W bandwidth
sk Maximum bandwidth capacity.

τdeadline Time limitation of response to delay-tolerant
task.

τdelay High latency limit.
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ρm Power consumption factor of workload migra-
tion.

µ Processing rate of workload in each server.
ηUE Energy consumption coefficient of servers.
PP Peak power consumption of servers.
PI Idle power consumption of servers.
G,E,M Linear matrix for the first stage, second stage

and uncertain variables in the second stage
optimization problem.

h Constant vector for the second stage optimiza-
tion problem.

c,d Coefficient vector for the first and second stage
objective function.

cVOLL Cost coefficient for load shedding.
cVOGC Cost coefficient for generation curtailment.
cVOLW Cost coefficient for workload dropping.
cVOMW
sk Cost coefficient for workload migration via

linkage path sk.
cVODW Cost coefficient for delayed-workload penalty.
cstart
g , cshut

g Cost coefficients for start-up and shut-down
operations of units.

ag , bg Fuel cost coefficients of units.
cR,g , c+r,g ,
c−r,g

Cost coefficients for spinning reserve, regula-
tion up and regulation down reserve.

ρ Risk-averse factor.
β Confidence level of conditional value-at-risk.
Mc Number of servers in the data center.

C. Uncertain Variables

εv , εθ, εI Random residual terms for simulating hurricane
translation speed, heading direction and inten-
sity.

εB , εlnRmw Random residual terms for modeling gradient
wind speed.

∆ptd Load forecasting error.
πij,t, πh,t,
πl,t

Failure probabilities of transmission lines, tow-
ers and conductor segments.

Itij Status of transmission lines, Binary variable, 1
if line ij is on-line, 0 otherwise.

r Distance between the site and the hurricane eye.
Ar,t, Bt Scaling parameters.
V gw
r,t Gradient wind speed.
Vr,z,t Wind speed considering height.
V tw Wind speed at the hub height of the wind

turbine.
P tw,max Maximum power available from the wind tur-

bine.
Ltc Workloads arrival rate.
vt Translation speed of the hurricane.
φt Latitude of the hurricane.
φr Site latitude.
λt Longitude of the hurricane.
λr Site longitude.
θt Heading direction of the hurricane.
It Relative intensity of the hurricane.
∆pt Central pressure drop.
∆pL Central pressure drop when the hurricane

makes landfall.

vL Translation speed when the hurricane makes land-
fall.

Rmw Radius of maximum wind.
V W
r,t Gradient wind speed.
ξp Stochastic vector in scenario p.

D. First-stage Decision Variables

αtg , βtg Start-up and shut-down commands, binary vari-
ables.

P tg Power generation set point.
Rtg Spinning reserve.
P tij Power transferred in day-head scheduling.
Θt
i Power angle of the bus in day-head scheduling.

mt
c Number of online servers.

x Decision vector for the first stage.

E. Second-stage Decision Variables

ptg,t Actual power output of the generator.
ptw Power output of the offshore wind turbine.
pwf,w Power output of the offshore wind farm.
θti Power angle in real-time scheduling.
ptij Power transferred in real-time scheduling.
ptls,d Load shedding.
ptij Generation curtailment.
wtlo,c Dropped workload.
wtde Delayed workload.
wta,esk Delay-tolerant task workloads.
wstsk Delay-sensitive task workloads.
wmt

sk Amount of migrated workloads.
ptm,c Power consumption of migrating workload.
ptc Total power consumption of the data center.
wtde Workloads responded with high latency.
y Decision vector for the second stage.

F. Abbreviation

OWF Offshore wind farm.
UC Unit commitment.
DR Demand response.
CDC Cloud data center.
DRO Distributionally robust optimization.
DC Data center.
WF Wind farm.
WT Wind turbine.
SO System operator.
CSP Cloud service provider.
TLS Total life simulation.
MPPT Maximum power point tracking.
MBD Modified Benders decomposition.
MILP Mixed integer linear programming.

I. INTRODUCTION

A. Motivation

RENEWABLE energy sources are accelerating the decar-
bonization transition of power systems [1]. Along with

the maturity of onshore wind development, OWFs are gaining
more and more attention due to richer wind energy, steadier
wind speed, etc [2]–[4]. During Hurricane Season, power
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output of OWFs is affected by mature stage of hurricanes
before landfall [5], while the onshore wind farms are typically
affected by strong wind and rain after making landfall, i.e.,
dissipation. As a result, the period that power systems can
be tortured is extended, and dual impacts of more uncertain
renewable generation and probabilistic failures of transmission
lines can lead to an unexpected deficit of power supply
resulting in major blackouts and momentary losses [6]. To
alleviate such adverse consequences, UC plays a decisive
role in proactive management by adapting units’ up and
down statuses to possible operational conditions. Furthermore,
amounts of various reserves, e.g., regulation up/down reserves
and spinning reserves, can be prepared in advance and imple-
mented to respond to latent contingencies as needed. Event-
based correlation of hurricane impacts on power generation
and transmission needs to be considered to make a more
specific operation strategy. Besides proactively scheduling
generators and power networks, potential merits of emerging
DR resources, e.g., CDCs, can be further explored. Novel
proactive energy management schemes should be proposed
for unity of both offshore and onshore resources towards
hurricanes, formulating a more resilient coalition.

B. Literature Review

Security-constrained unit commitment has been widely dis-
cussed in existing literature as a powerful tool to cope with
fluctuation and intermittency of power generation resulting
from high wind penetration. To guarantee high utilization of
wind power, an indicator to measure performance of wind
accommodation is modeled as chance constraints [7], which
are integrated with reliability indices into the optimization
problem to maintain a reliable power supply [8]. A two-stage
stochastic UC is proposed in [9], in which transmission con-
straints and contingencies are considered when investigating
operating cost impacts of involving high wind penetration.
In [10], a versatile probability is adopted to achieve a more
accurate description of wind power forecast errors by adapting
the shape parameters to the training data. Regrading strong
spatial correlation among geo-distributed WFs, the Dirichlet
process mixture model is employed to construct a data-driven
uncertainty set of wind power forecast errors for robust UC in
a non-parametric paradigm [11]. Similarly, a multidimensional
joint probability based on the Gaussian mixture model is
applied in [12] to explore the spatial correlation between WFs
and lead to a more straightforward solution method of chance-
constrained UC optimization.

There has been extensive research on system reliability
regarding unexpected and independent outages of power gird
elements, e.g., generators and transmission lines in general. To
meet requirement of continuous power supply and delivery un-
der accepted standards [13], N−1, N−1−1, and N−k criteria
are broadly implemented in reliability evaluation. Ensuring the
system is N − 1 compliant, co-optimization of transmission
topology switching and UC model is proposed in [14] to fetch
an optimal transmission switching scheme for cost reduction.
Considering the exponential growth of combinatorial contin-
gency states as k increases, full contingency enumeration is
unrealistic, and a contingency selection technique has been

developed to identify critical components and construct a
reduced set of credible contingencies [15], [16]. Instead of
relying on a limited contingency list, a robust UC optimization
method is proposed in [17] subject to all combinations of most
K unit outages in a computationally efficient manner. In [18],
an ambiguity set based on the discrete reference scenario set,
which combines the most probable contingencies and highest
impact contingencies, is embedded into the DRO model to
make a transmission system hardening plan.

Normally, power systems are designed to be reliable in
normal conditions, while resilience against low-probability and
high-impact disruption, e.g., natural disasters and man-made
attacks, remains vulnerable [19], [20]. Existing strategies for
resilience enhancement can be generally divided into pre-
vention [21]–[23], emergency response [24]–[27] and restora-
tion [28], [29]. This paper falls under day-ahead preventive
actions and real-time emergency response, so only relevant
research will be discussed. In [19], power flow entropy and
power line loading rate are treated as penalty terms in the
objective function of the proposed resilience-constrained UC,
in which weather intensity is normalized into normal, severe
conditions and major storm disaster, and impacts of certain
weather events are not revealed. A resilient operation method
is presented for distribution systems in [24], which collabo-
rates deep reinforcement learning as a tool to train an intelli-
gent controller. During the training process, various translation
speeds and approaching angles are given to generate straight
hurricane traces with constant intensity overseas. In [25],
differences between prevailing and event-related uncertainties
are discussed. Fragility curves estimate a dynamic uncertainty
bound of operation conditions based on historical data for
microgrid operators. Resilient operation based on an ambiguity
set of branch outages considering uncertainties of probability
distribution is proposed in [23], and [27] for transmission
and distribution systems, respectively. Weather condition is
assumed to be idle at different locations at the same time for
distribution systems, while in transmission systems it varies at
spatially distributed components.

With spatially DCs, CDCs have been recognized as temporal
and spatial flexible DR resources by exploring different char-
acteristics of workloads. For given workloads arrival sequence,
temporal flexibility is realized by a single DC, by optimally
scheduling delay-tolerant and delay-sensitive workloads, using
dynamic voltage frequency scaling [30], [31] and dynamic
power management [32]–[34]. Further adjusting arrival se-
quence of workloads via migrating workloads among different
DCs, CDCs can realize power load shifting among DCs spa-
tially. This ability has been deployed to improve operational
efficiency of CDCs under normal conditions, e.g., reducing
power consumption and monetary cost [35], [36]. Besides
energy-saving strategies for cloud service providers, CDCs
are recently coordinated into novel application scenarios, e.g.,
operation cost reduction for power systems [37], flexibility
improvement for distribution network [38], generation and
transmission expansion postponement [39]. It has not been
verified whether spatial flexibility of CDCs can be employed in
UC problems during the proactive management during extreme
events.
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Despite strenuous efforts, some gaps remain to be further
explored in resilient operation strategies. Numerous paramet-
ric and non-parametric probability distributions have been
developed to describe wind power uncertainty in normal
weather conditions appropriately. Extremely high wind speed
exceeding cut-out wind speed of WTs during hurricanes is
out of consideration, which leads to extreme mechanical load
on the structure of WTs. To prevent severe damage, WTs
need to be shut down, and power injected from WFs can
change from maximum to zero, incurring a substantial and
unexpected loss of generation in power systems with high
wind penetration. In other words, when hurricanes are passing
by, wind speed affects reliability of transmission lines and
availability of renewable power generation simultaneously. In
most existing literature about resilience enhancement, dual
impacts of extreme events on renewable generation and trans-
mission lines are exclusively considered ignoring the event-
related nature. To make a more specific operation strategy for
resilience enhancement, available output of WTs should be
derived from time-varying wind speed at hub height according
to the hurricane track.

C. Contributions

To fulfill research gaps mentioned before, a proactive oper-
ation strategy is proposed in this paper to enhance resilience
of power systems against hurricanes. The strategy combining
UC and scheduling of CDCs is modeled as a two-stage DRO
problem with risk aversion [40]. The main contributions of
this paper compared to existing literature are summarized as
follows:

1) Combining the TLS method of hurricanes with the
fragility curve of transmission line components and power
curve of WTs, an event-based ambiguity set is generated,
reflecting underlying correlations between renewable energy
fluctuation and failures of transmission lines.

2) Effectiveness of CDCs as a kind of resilient DR resource
under extreme conditions is explored, taking advantage of
temporal flexibility of delay-tolerant workloads and spatial
flexibility via task migration among geo-distributed CDCs.

3) Regarding time-consuming iterations of classical Benders
decomposition caused by poor performance of optimal cuts, a
novelty decomposition algorithm with hybrid cuts is proposed
to speed up the convergent process, which effectively balances
scale of the master problem and number of iterations.

II. PROACTIVE RESILIENT MANAGEMENT OF POWER
SYSTEMS TOWARDS HURRICANES

This section presents resilience management of power sys-
tems with CDCs and OWFs. As shown in Fig. 1, data and
power layers are contained in a coupled system and interact
via buses to which CDCs connect. In data layer, the CDC
platform consists of several DCs and the data transmission
networks among DCs. The nearest front-end proxies of CDCs
firstly collect the calculation requests submitted from users
and subsequently route to local servers or migrated among
CDCs via cyber linkage as needed taking delay tolerance
of requests into account [41]. A power transmission network

Front-end proxies of

CDCs

Requests

Delay tolerance
&

Transformer
Tower

Hurricane
track

Line failures

Back-end
servers of

CDCs

Offshore
wind farm

Thermal
units

Data layer Power layer

Fig. 1. Power systems with OWFs and CDCs.

integrated with several geographically diverse OWFs is taken
into account in the power layer.

According to the uncertainty set obtained by applying TLS
illustrated in Section III, a proactive operation strategy is
critical for SOs and CSPs. From the perspective of SOs,
dual uncertainties from generation and transmission sides pose
formidable challenges for maintaining a continuous power
supply. In terms of CSPs, loss of power supply can lead
to computing task failures and create dissatisfaction towards
cloud services [42]. For a more reliable power supply and to
avoid workload dropping, CDCs scheduling is integrated with
traditional controllable resources, i.e., thermal units, to make
a joint two-stage unit commitment, as shown in Fig. 2. Taking
advantage of workload migration and the geo-distributed fea-
ture of CDCs, power consumption of CDCs could be shifted
from one bus to another together with task migration.
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Fig. 2. Framework of the proposed resilient operation strategy.

III. AMBIGUITY SETS FOR OPERATING SCENARIOS
UNDER HURRICANES

Impacts of hurricanes on power systems are explored in this
section, including drastic fluctuation of wind power generation
caused by critical wind conditions and potential failures of
transmission lines due to high wind speed and heavy rain. TLS
describes hurricanes’ development and dissipation process
overseas and onshore in detail. Time-varying intensity and
track are combined with wind power curve and fragility curve
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to develop an event-based uncertainty set, which is then treated
as reference probability distribution of the ambiguity set.

A. Total Life Hurricane Simulation

Several features, e.g., location, intensity, translation speed,
heading direction, and the radius of max wind, are essential
for simulating a whole life hurricane track with the statistical
model [10]. Historical data of hurricanes within the region
of interest is utilized to formulate a statistical model. There
have been various researches indicating evolution of hurricane
trajectory path depends on two time slots before [43], [44].
Time-varying track simulation based on Markov chains is
presented as follows:

vt = a1 + a2vt−1 + a3vt−2 + εv, ∀t (1)
θt = b1 + b2θt−1 + b3θt−2 + b4φt−1 + b5λt−1 + εθ, ∀t (2)

Current hurricane translation speed in time slot t depends
on vt−1 and vt−2, while current direction is also affected by
latitude and longitude one timeslot before.

Intensity simulation model is different onshore and offshore,
considering the nature of hurricanes’ development and dissipa-
tion process. Central pressure drop is widely accepted to depict
intensity of hurricanes onshore. Instead, relative intensity is
introduced to normalize hurricane intensity overseas, regrading
the climatic conditions, e.g., sea surface temperature (SST).
Calculation of relative intensity is shown as follows:

It =
1013−∆pt + (1− RH)es
(1− x)[1013− (RH× es)]

, ∀t (3)

It = c1 + c2It−1 + c3It−2 + εI , ∀t (4)

After hurricanes make landfall, the power source which
keeps sustaining convection and lowers central pressure of
hurricanes is lost. As a result, eye heating gradually decreases,
and central pressure increases. The filling model is depicted
as follows:

∆pt = ∆pL exp(−d∆t), ∀t (5)
∆t = t− tL, ∀t (6)

d = d0 + d1(∆pLvL/R
mw) (7)

Remark1. According to historical hurricane data, coeffi-
cients in the intensity model, translation speed model, heading
direction model, i.e., a1, a2, a3 in (1), b1, b2, b3, b4, b5 in
(2), c1, c2, c1 in (4) are estimated by auto-regressive method
with predefined spatial grids and time frames. Randomness
of hurricanes mainly relies on residual terms, i.e., εv , εθ,
εI , which generally do not follow normal distribution [10].
Empirical distributions are employed to depict these terms.
The initial state of location, intensity, and heading direction
is known under the assumption it could be obtained from the
bureau of meteorology.

To quantify the wind speed at WTs and transmission lines,
the wind field model, which reflects physical characteristics
of hurricanes, is used [44]. With the distinct distance r from
the center of the hurricane, gradient wind speed could be
represented as follows:

V gw
r,t = [Ar,t + δ2r2/4]

1
2 − rδ/2, ∀r, t (8)

Ar,t = (Rmw
t /r)BtBt∆p

exp(−(Rmw
t /r)Bt)

ρair
, ∀r, t (9)

Bt = 1.881− 0.00557Rmw − 0.01295φt + εB , ∀t (10)

lnRmw
t = 3.859− 7.7001× 10−5∆p2

t + εlnRmw , ∀r, t (11)
δr = 2Ωr sinφr, ∀r, t (12)

In the vertical direction, increase of wind speed with the
height model in [45] is utilized to distinguish wind speed at
different heights z. It is shown as follows:

Vr,z,t = V gw
r,t

(
h

hz

)αr

, ∀r, z, t (13)

Integrating the wind field model with time-varying intensity
and track model, a specific hurricane scenario can be generated
by hurricane information of the initial time slot, i.e., central
pressure drop, translation speed, and heading direction.

B. Power of Offshore Wind Farm Output

The power generated by a WT depends on wind speed at
the hub site and power conversion coefficient of the WT. The
power output available from a WT P tw,max is shown as follows:

P tw,max =
0, V tw ∈ [0, Vcut-in],
1
2ρairπR

2(V tw)3Cp, V tw ∈ (Vcut-in, Vrate],

Prate, V tw ∈ (Vrate, Vcut-out),

0, V tw ∈ (Vcut-out,+∞]

, ∀w, t (14)

When wind speed is lower than cut-in speed Vcut-in, power
output of WTs is 0. In the second wind speed interval between
Vcut-in and Vrate, available power increases with wind speed.
Widely utilized in WT control, MPPT strategy is realized by
adjusting the rotational speed, so the power curve under MPPT
is assumed to be the upper bound of power generated by WTs.
In the third wind speed interval between Vrate and Vcut-out,
power output available stays to be a constant Prate, i.e., the
maximum output. However, if the wind speed exceeds Vcut-out,
WTs are shut down to protect the turbines from extreme
mechanical load.

The power output of a WF is shown as follows:

0 ≤ ptw ≤ P tw,max, ∀t, w (15)

ptwf,w = Nwp
t
w, ∀t, w (16)

In the proposed strategy, power output of WTs can be
dispatched down if needed since adaptive rotor speed of the
WT could be achieved by adjusting pitch angle and tip speed
ratio [46].

C. Modeling of Transmission Line Failures

According to the TLS, a fragility analysis model is intro-
duced to quantify failure probabilities of transmission line
components, i.e., towers and segments. The fragility analysis
model is based on the discrete-time Markov process, details
of which can refer to (1)–(3) in [23].

Combining transmission segments and towers in series,
failure probabilities of transmission lines are shown as follows:

πij,t = 1−
∏
k∈Kij

(1− πk,t)
∏
l∈iij

(1− πl,t), ∀ij, t (17)
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The scenario of line failures is generated by comparing πij,t
with random number sampled from uniform distribution within
[0, 1] interval.

D. Formulation of Ambiguity Sets

A metric-based ambiguity set is proposed to depict uncertain
operation conditions, which contains a family of distributions
being close to the reference distribution from the point of given
statistic distance, i.e., L1 distance in this paper [40]. Uncertain
variables related to operational strategy include power output
of WFs, failures of transmission lines, task arrival rate of
CDCs, and load forecasting errors. The ambiguity set is shown
as follows:

P =

{
P :
∑
ω∈Ω

|π0
ω − πω| ≤ τDRO

}
(18)

where π0
ω and πω are discrete probabilities of scenario ω in

nominal and true distribution, respectively. τDRO is L1 distance
tolerance. Motivation and detailed merits of the proposed
ambiguity set are explained in Remark 2.
Remark2. DRO is a novel approach to handling uncertain-
ties, eliminating the impractical assumption under stochastic
optimization that the exact probability distribution of scenarios
is known, and alleviates excessive conservatism of robust
optimization [47]. With limited data of scenarios, a less-
conservative result can be obtained considering worst real-
ization of probability distribution within the ambiguity set.
Compared to existing ambiguity sets in [23], [27], which
describe only impacts of hurricanes on branch outage prob-
ability, a more comprehensive ambiguity set is proposed to
reflect event-based characteristics including available power
output of WFs and failures of transmission lines. In each
scenario, the time-varying intensity hurricane track is treated
as the same input for both power output model of OWFs
and failure model of transmission lines. Rather than assuming
different types of uncertain variables are independent, the
coupling relationship among uncertainties between generation
and transmission sides is considered in the proposed ambiguity
set.

IV. CLOUD COMPUTING DATA CENTER MODELING FOR
PROACTIVE MANAGEMENT

An appropriate number of online servers within each DC
should be determined in day-ahead UC, considering high
energy consumption of idle servers and delay during the
transition between sleep state and active state. Idle servers in
CDCs are usually over-provisioned and set as active to meet
peak requests. However, power consumed by an idle server is
more than 60% of peak power [48]. From the perspective of
energy saving, idle servers should be turned off or switched
into deep-sleep modes [34]. Considering long setup time spent
to turn them back on before they could process workloads,
proactive management of online servers is essential to pre-
schedule CDCs, which is shown as follows:

mt
c ≤Mc, ∀c, t (19)

Referring to [41], [49], workloads at each DC could be
reallocated among CDCs via optical fibers as needed in real-
time scheduling of CDCs, according to arrival rate and delay
tolerance of requests. Management model of CDCs during
real-time scheduling is shown as follows:

0 ≤ wta,esk , ∀sk, a, e (20)
0 ≤ wstsk, ∀sk, t (21)

Ltc =
∑
e∈T

∑
k∈C

wta,esk +
∑
k∈C

wstsk, ∀c, t (22)

V tc =
∑
a∈T

∑
s∈C

wta,esk +
∑
s∈C

wstsk − wtlo,c, ∀c, t (23)

V tc = mt
cη
t
u,cµ, ∀c, t (24)

0 ≤ ηu ≤ 1 (25)
wta,esk = 0, ∀sk, a− e > τdeadline (26)

wmt
sk =

∑
a∈T

wta,esk + wstsk, ∀sk, t (27)

wmt
sk ≤W bandwidth

sk , ∀sk, t (28)

ptm,c = ρm

( ∑
k∈C,k 6=c

wmt
ck +

∑
s∈C,s6=c

wmt
sc

)
, ∀t, c (29)

(PI + (ηUE − 1)PP )mt
c + (PP − PI)

V tc
µ

+ pm,c = ptc,

∀m, c, t (30)

wtde =
∑

a∈T ,a−t≥τdelay

∑
sk∈A

wta,tsk , ∀t (31)

Equations (20)–(24) are constraints on task collection and
processing balance. Equation (25) is constraint of CUP uti-
lization under the assumption that all servers in the CDCs are
homogeneous and workloads are equally distributed and could
be calculated in parallel. Equation (26) represents workloads
that must be responded to within the time limitation. Equations
(27) and (28) are balances of workload migration and capacity
limitation. Equations (29) and (30) denote power consumption
of CDCs after workload redistribution. Equation (31) counts
sum of tasks responded with high latency, which incurs delay
penalty.

While CDCs’ temporal and spatial flexibility is exploited to
enhance system resilience, cost associated with DR of CDCs
should be considered, including extra energy consumption and
bandwidth cost for migrating workloads among CDCs in (29)
and (34) later in Section V, and penalty due to dissatisfaction
towards high-latency response in (31) and (34) [41], [50],
[51]. Generally, CSPs are mainly concerned about reliable
power supply and energy cost-saving, which is the immanent
incentive for CDCs to participate in the DR program is in-
crease of net benefit [37]. However, the specific redistribution
mechanism of social welfare by applying resilient operation
remains undiscussed here because this paper pays more atten-
tion to exploring effectiveness of CDCs as a kind of resource
in resilient management.

V. DISTRIBUTIONALLY ROBUST UNIT COMMITMENT FOR
RESILIENT OPERATION

A two-stage DRO problem describes the decision-making
process in day-ahead and real-time operational periods. Day-
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ahead UC, including pre-scheduling of CDCs, is assigned
at the first stage. Real-time scheduling of generators and
workload migration of CDCs are determined at the second
stage under each scenario, respectively. DRO problem is then
reformulated as a MILP problem, solved by a decomposition
method with hybrid cuts, including primal cuts and optimal
cuts. Primal cuts are derived from worst scenario and can
be updated in each iteration to maintain a small scale of the
master problem.

A. Objective Functions

Compact expression of the optimization problem is shown
as follows:

min
x∈X

f(x) + ρmax
P∈P
{E[QDRO(x, ξ)]

+ 1− ρ)CVaR,β [QDRO(x, ξ)]} (32)

where f(x) is objective function of the first stage. x are
first stage decision variables, within feasible set denoted as
X . QDRO(x, ξ) is recourse problem representing effect of
first stage decision variables to the second stage. ξ is a
vector consisting of uncertain variables in the second stage.
Conditional value-at-risk CVaR is introduced combining factor
ρ to reflect risk aversion to extreme conditions at confidence
level β.

The objective function of first stage is comprised of start-up,
shut-down, fuel, and reserve costs, as follows:

f(x) = cTx

=
∑
t∈T

∑
g∈G

{
cstart
g αtg + cshut

g βtg + bgu
t
g + [agP

t
g

+ cR,gR
t
g + c+r,gr

+,t
g + c−r,gr

−,t
g ]∆t

}
(33)

The objective function in the second stage, which reveals
impacts of the hurricane, is presented as follows:

QDRO(x, ξ) = min
y∈Y(x,ξ)

dTyω

= cVOLL
∑
t∈T

∑
d∈D

ptls,d∆t+ cVOGC
∑
t∈T

∑
g∈G

ptgc,g∆t

+ cVOLW
∑
t∈T

∑
c∈C

wtlo,c +
∑
t∈T

∑
sk∈A

cVOMW
sk wmt

sk

+ cVODW
∑
t∈T

wtde (34)

where Y is the feasible set of y. Y is determined by constraints
in the second stage.

B. Constraint Sets

Constraints on day-ahead UC consist of start-up and shut-
down constraints considering minimum up/downtime, system
requirements of spinning and regulation reserve, and number
of online servers in CDCs. Constraints on real-time schedul-
ing include ramp-up/down and maximum/minimum power
generation constraints of generators, constraints on power
transmission considering line failures, load fluctuation limits,
real-time management constraints of CDCs, and power balance
at each bus. More details about two-stage UC can be referred
to (19)–(36) for the first stage and (37)–(42) for second stage

in [23]. Besides, power balance constraints considering CDCs
and OWFs are presented as follows:∑

g∈Gj

(pg,t − ptgc,g) +
∑
ij

ptij −
∑
ij

ptji +
∑
w∈Wj

ptwf,w

=
∑
d∈Dj

(P td + ∆ptd − ptls,d) +
∑
c∈Cj

ptc, ∀t, j (35)

whereWj , Cj denote the set of wind farms and DCs connected
to bus j, d ∈ Dj is load set of the bus j.

C. Deterministic Reformulation and Solution Methods

The optimization problem in (32) is a min-max problem,
which could not be solved directly [40]. The Lagrangian dual
is utilized to derive the corresponding deterministic counter-
part of (32) as follows:

min cTx+ τDROz + (1− ρ)η +
∑
ω∈Ω

π0
ω(z+

ω − z−ω ) + ϑ

s.t. Gx+Wyω ≥ h−Mξω, ∀ω ∈ Ω

ρdT
ωyω +

1− ρ
1− β

vω ≤ z+
ω − z−ω + ϑ, ∀ω ∈ Ω

z+
ω + z−ω − z ≤ 0, ∀ω ∈ Ω

dT
ωyω − η ≤ vω, ∀ω ∈ Ω

z, z+
ω , z

−
ω , vω ≥ 0, x ∈X (36)

where z, z+
ω , z−ω and ϑ are Lagrangian multipliers of the dual

problem. η is value-at-risk (VaR) of the recourse problem
QDRO. X is determined by constraints in first stage opti-
mization, i.e., proactive management of CDCs and day-ahead
UC. Gx + Wyω ≥ h −Mξω are constrains in the second
stage optimization, i.e., real-time management of CDCs and
economic dispatch. The first and second stage constraints are
described in Section V-B.

Considering the increasing scale of the MILP problem as
number of scenarios increases, a kind of modified MBD
with hybrid cuts is proposed to accelerate convergence and
reduce computation time. First, subproblem of each scenario
QDRO(x, ξω∗) in (34) can be solved independently with given
x. The scenario index with max operational cost in the
second stage is recorded as ω∗. The master problem could
be formulated as follows:

min cTx+ τDROz + (1− ρ)η +
∑
ω∈Ω

π0
ω(z+

ω − z−ω ) + ϑ

s.t. $n,T
ω (h−Gx−Mξω)− η ≤ vω, ∀ω ∈ Ω, ∀n ≤ m

ρ$n,T
ω (h−Gx−Mξω) +

1− ρ
1− β

vω ≤

z+
ω − z−ω + ϑ, ∀ω ∈ Ω, ∀n ≤ m

z+
ω + z−ω − z ≤ 0, ∀ω ∈ Ω

Gx+Wyω∗ ≥ h−Mξω∗

dTyω∗ − η ≤ vω∗

ρdT
ωyω∗ +

1− ρ
1− β

vω∗ ≤ z+
ω∗ − z−ω∗ + ϑ

z, z+
ω , z

−
ω vω ≥ 0, x ∈X (37)

where the first and second constraints in the master problem
are optimal cuts of classic Benders Decomposition (BD).
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Considering load shedding, workload dropping and generation
curtailment, second stage optimization problem is always
feasible with given x and ξ, i.e., QDRO(x, ξ) is a complete
recourse problem. $T

ω are dual variables of second stage sub-
problem QDRO. m is the number of iterations. The third to fifth
constraints are primal cuts generated according to the most
costly scenario and utilized to accelerate convergence. Index
ω∗ is updated in each iteration, and primal cuts are replaced
simultaneously. The scale of the optimization problem remains
relatively small, and number of decision variables is invariable
during iterations.
$T
ω can be determined by solving the dual problem shown

as follows:

Q′DRO(x, ξω) = max$T
ω (h−Gx−Mξω)

s.t. ET$ω = d,$ω ≥ 0 (38)

With xm by solving the master problem during iteration
m, Q′DRO can be calculated in (38). Then the upper bound
during iteration m can be calculated by solving the problem
as follows:

min cTxm + τDROz + (1− ρ)η +
∑
ω∈Ω

π0
ω(z+

ω − z−ω ) + ϑ

s.t. ρQ′DRO(xm, ξω) +
1− ρ
1− β

vω ≤ z+
ω − z−ω + ϑ, ∀ω ∈ Ω

z+
ω + z−ω − z ≤ 0, ∀ω ∈ Ω

Q′DRO(xm, ξω)− η ≤ vω, ∀ω ∈ Ω

z, z+
ω , z

−
ω , vω ≥ 0 (39)

The complete pseudocode of the MBD is demonstrated as
Algorithm 1.
Theorem1. Algorithm 1 converges in fewer iterations than
classic Benders Decomposition.

Proof : See appendix for details.

VI. CASE STUDIES

The experimental setup is first introduced, including simu-
lated system and critical parameters of OWFs and CDCs. Sev-
eral comparative cases based on different operational strategies
are designed to verify performance of the proposed strategy to
mitigate damage of hurricanes. Finally, calculation efficiency
of the proposed MBD method with hybrid cuts is tested in
comparison with classic BD approach.

A. Case Description

As shown in Fig. 3, cases are simulated on a modified IEEE-
RTS system [52], which contains 4 geographically dispersed
CDCs and 5 OWFs. The entire power system onshore is
projected to a 150 ∗ 200 km area [53]. The attached bus and
number of servers in each DC are shown in Table I, and
parameters of the server refer to [34]. The processing rate of
each server is set to 500 tasks per second. The arrival rate of
the task is based on request curves in the ForHLR system de-
rived from [54], and hurricane data set, HURDAT2, from [55]
is employed to obtain coefficients of hurricanes in the TLS.
As shown in Table II, several linkage paths are accessed to
constitute the CDC platform. Test cases are accomplished on

Algorithm 1: Modified Benders Decomposition with
optimal and primal cuts

Data: X,G,W ,h,M , ξω,mmax, ε, ρ, c,d
Result: x, u

1 Initialize: UB ← +∞, LB ← −∞,m← 1
2 while ((UB − LB)/|UB| > ε) ∧ (m ≥ mmax) do
3 Solve master problem in (37)
4 if infeasible then
5 terminate: The optimization problem is

infeasible
6 else
7 x← xm, LB∗ ← Optimal value of (37)
8 LB ← max(LB∗, LB).
9 end

10 for ω ∈ Ω do
11 Solve the subproblem in (38),
12 $n,T

ω ←$m,T
ω , getQ′DRO(xm, ξω)

13 end
14 Derive the scenario ω∗, according to

Q′DRO(xm, ξω∗) = maxω∈ΩQ
′
DRO(xm, ξω).

15 Solve the problem in (39),
16 UB∗ ← Optimal value of (39)
17 UB ← min(UB∗, UB).
18 Add the Benders optimal cuts, replace the variables

yω∗ and the primal cuts according to $n,T
ω and

ω∗.
19 m = m+ 1.
20 end
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Fig. 3. Modified IEEE-RTS system with CDCs and OWFs.

a server with an Intel Xeon Gold 6226R CPU@2.90 GHz and
128 GB of RAM. The proposed optimization model is solved
by GUROBI.

A total of 5 wind farms are integrated into the power
system, located along the coast and 23 km from the coast.



LIU et al.: RESILIENT POWER SYSTEMS OPERATION WITH OFFSHORE WIND FARMS AND CLOUD DATA CENTERS 1993

TABLE I
PARAMETERS OF CDCS AND SERVERS

DC Bus Quantity of servers PP (W) PI (W) ηUE

1 5 28000 243 150 1.4
2 13 35000 243 150 1.4
3 15 28000 243 150 1.4
4 20 35000 243 150 1.4

TABLE II
LINKAGE PATHS AMONG CDCS

Path 1 2 3 4 5 6
Source DC 1 1 2 3 4 4
Destination DC 2 3 4 4 1 2
Distance (km) 80.89 112.74 77.52 117.63 67.48 77.52

The total installed capacity of wind power is 234 MW, and
wind power generation is injected into the power system by
bus 3. The parameters of WTs are shown in Table III [56]. 50
scenarios are generated considering the total life simulation of
the hurricane as described in Section II. There are 2 scenarios,
scenarios 29 and 41, where load shedding occurs. Scenario
41 is worst scenario with the most significant number of line
failures, i.e., 12 lines failed in this scenario, as shown in Fig. 4.
Since differences in position, relative location of WFs and
hurricane track produce variant wind speed curves in scenario
41 as shown in Fig. 5. The wind speed at WF 1 and WF 2 is M-
shape because the eye of the hurricane passed by the location
of these WFs. According to wind field features depicted by
(8)–(12), wind is very light in the eye and strongest on the
eyewall. During 11:00–13:00, significant reduction of the wind
speed at WF 2 is caused by close distance between WF 2
and hurricane eye. Considering wind speed at WFs and power
curve under MPPT in (14), available outputs of 5 WFs are
shown in Fig. 6. The wind speed at WF 5 from 19:00 to
24:00 and WF 1, 2, 3, and 4 from 20:00 to 24:00 is lower

TABLE III
PARAMETERS OF WIND TURBINES

Type Capacity (MW) Vcut-in (m/s) Vrate (m/s) Vcut-out (m/s) h0 (m)
E-82 3 3.0 16.0 34.0 78
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Fig. 4. Line failures in scenario 41.
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Fig. 6. Power output of OWFs in scenario 41.

than cut-out wind speed and higher than rated wind speed, so
maximum wind power outputs are available.

Comparative experiments are first simulated to study im-
pacts of workload flexibility on power balancing. In case 1,
workloads are processed by servers in the source DC, by
which workload is first collected, and all workloads are set
to be delay-sensitive. In case 2, workload migration through
the linkage path is considered, and the maximum bandwidth
capacity is set to be 2.5 × 106 requests/s, accounting for
25% of peak workload requests. In case 3, both workload
migration and workload shifting among different time slots are
considered. In case 4, energy-saving scheduling is neglected.
Servers in DCs are always active to meet the peak demand
of workload requests. To investigate influence of wind power
generation, WTs are set to be shut down during operational
time in case 5. Maximum service delay of delay-tolerant
workloads is set to be 2 hours. ρsen is ratio of delay-sensitive
workloads to all workloads. Moreover, risk-averse impact of
the CVaR term in the objective function is explored by setting
ρ = 1 in case 6 and ρ = 0 in case 7. Sustain comparability,
all cases are calculated by setting τDRO and β to be 0.05
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and 0.9 correspondingly. ρbandwidth is the ratio of maximum
bandwidth capacity to peak workload requests. Ie and Iw are
binary variables. Ie = 1 means the strategy considers energy-
saving, 0 otherwise. Iw = 1 means the available wind power
is considered, 0 otherwise. These comparative simulated cases
are shown in Table IV.

B. Impact of CDCs’ Flexibility

Optimization results of different strategies are presented as
Table V. κ is optimal value of CVaR,β [QDRO(x, ξ)] in (32).
Simulated scenarios have not caused dropped workload and
generation curtailment. The cost of workload migration and
delay penalty is much less than dropped workload, so the cost
in the second stage is mainly caused by load shedding on the
demand side. In all cases, E[QDRO] is much smaller than κ,
which reflects the extreme operational cost with conditional
value β of 0.9. CVaR,β [

∑
wmi] is 0 in case 1, because spatial

migration and temporal shifting of workload is not allowed.
The workload has to be processed locally in time to avoid
dropping workload. The number of active servers in each
DC is shown in Fig. 7. As shown in Fig. 7, online servers

TABLE IV
SIMULATED CASES

Case ρsen ρbandwidth Ie Iw ρ
1 1 0 1 1 0.5
2 1 0.25 1 1 0.5
3 0 0.25 1 1 0.5
4 0 0.25 0 1 0.5
5 0 0.25 1 0 0.5
6 0 0.25 1 1 1
7 0 0.25 1 1 0

TABLE V
OPTIMIZED RESULTS

Case f(x) E[QDRO] κ CVaR [
∑
pls] CVaR [

∑
wmi]

(105$) (104$) (105$) (p.u.) (p.u.)
1 7.77 0.96 9.56 2.39 0
2 7.76 1.01 9.46 2.37 6.99
3 7.82 0.91 9.45 2.36 14.38
4 8.00 0.93 9.74 2.43 16.44
5 7.81 1.07 11.79 2.94 16.06
6 7.64 1.67 9.87 2.46 15.72
7 7.78 0.89 9.44 2.36 17.73

in each DC during operational time are almost the same
in case 1 to satisfy requests. However, taking advantage of
temporal and spatial flexibility of workloads, the number of
active servers in case 3 is optimized to reduce the cost of load
shedding. Compared to case 1, load shedding is reduced via
task migration in CDCs.

To further research the effect of strategy in extreme con-
ditions, scenarios 29 and 41 are investigated. In scenario
29, transmission lines 3 and 9 failed at 15:00 and 16:00,
respectively. As a result, power supply of bus 5 is affected, and
load shedding continues until the end of the operational period.
Since DC 1 is connected to bus 5, power consumption of active
servers in DC 1 could aggravate load shedding in bus 5. In
case 2 and case 3, workloads could be migrated from source
DCs to destination DCs among CDC platforms via linkage
paths, as shown in Table II. Therefore, the number of required
servers in source DCs and destination DCs are adjustable
by considering workload migration. Power consumption for
serving workloads can be transferred from buses where source
DCs connected to buses with destination DCs connected. In
the proposed strategy, flexible power consumption of CDCs is
transferred to reduce load shedding. As shown in Fig. 5, all
servers in DC 1 are set to be sleep-down from 18:00 to 24:00,
because arrived workloads collected by the DC 1 are migrated
to DC 2 and DC 3 in case 3. And the power consumption of
CDCs are transferred from bus 3 to buses 12 and 13 at the
same time.

To exploit the effect of temporal and spatial flexibility of
CDCs in resilience enhancement, reduction of load shedding
in case 2 and case 3 compared to case 1 is shown in Fig. 8.
In case 3, reduction of load shedding is almost the same
in case 2 during 18:00–24:00 because the bandwidth of the
linkage paths is sufficient to migrate collected workloads,
and all delay-sensitive workloads are reallocated to DC 2
and 3. Taking advantage of spatial flexibility, load shedding is
reduced in cases 2 and 3. However, load shedding reduction
in case 3 is increased by 5.2% compared to case 2, because
arrival rates of workloads in DC 1 are 9.9 ×106 requests per
second, which exceed the total capacity of paths 1 and 2, 5
×106 requests per second. To process the remaining part of
workloads, a certain number of servers have to stay active
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Fig. 8. Reduction of load shedding in scenarios 29 compared to case 1.

in case 2, leading to extra load shedding compared to case
3. In other words, with consideration of delay tolerance, the
performance of CDCs scheduling could be improved since
influences of physical constraints, such as the bandwidth
capacity constraints and computation capacity constraints, are
alleviated or eliminated.

C. Impact of TLS Application

To investigate the effect of application of TLS, all WTs
are shut down during the operational time in case 5, while
different available power of 5 WFs in case 3 is fetched to
make a more resilient operational strategy considering time-
varying wind speed and disperse locations as shown in Fig. 6.
The optimized results of pwf

w demonstrate power output of WTs
in OWFs stays at Prate, which is integrated and injected into
bus 3. Severe failures in the transmission network, as shown in
Fig. 3, lead to heavy load shedding at several buses, including
buses 1, 3, 5, and 6. In case 3, the total load shedding under
scenario 41 is 1627 MWh which is 2.8 times load shedding
under scenario 29, 591 MWh. Comparison of load shedding
in cases 3 and 5 under scenario 41 is shown in Fig. 9. Load
shedding during 16:00–19:00 and 23:00–24:00 is mainly due
to failures of lines 3, 5, 9, 10, which lead to isolation of buses
5 and 6. Besides, failure of line 6 at 19:00 and line 23 at 20:00
affects power supply at bus 1 and 3, so load shedding occurs
is incurred at bus 1 and 3 in case 5. Instead, power shortage
at buses 1 and 3 is supplied by timely power injection from
wind farms in case 3. Consequently, the total load shedding
in case 3 is reduced by 20.1% compared to case 5.

D. Impact of Risk Aversion

Cases 6 and 7 is carried out to investigate effectiveness of
risk-averse term CVaR,β [QDRO(x, ξ)]. In case 6, ρ is set to be
1, which means the operational cost in extreme scenarios is
ignored, and proactive management focuses on minimizing the
expected value of all scenarios resulting in minimum value
of E[QDRO]. In contrast, ρ is set to be 0 in case 7, which
means the operator is extraordinarily risk-averse and tends to
minimize operational cost κ in extreme scenarios. κ in case 7
is reduced by 4.3 ×104 compared to case 6, while f(x) and
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Fig. 9. Comparison of load shedding in scenario 41.

E[QDRO] is increased by 1.4 ×104 and 7.8 ×103, respectively.
Extra cost in day-ahead scheduling is incurred to further
prevent potentially high penalty in real-time scheduling.

E. Efficiency Analysis of MBD Algorithm
To explore efficiency of the proposed MBD algorithm,

the classic BD and the proposed MBD with hybrid cuts
are implemented to solve optimization problem (34) with
different convergence gaps ε and sizes of the scenario set
Ns. ρ and β are set to be 0.5 and 0.95, respectively. The
number of iterations and computation time Tc are adopted as
performance indexes. Convergence performances of BD and
MBD are shown in Table VI. Compared with classic BD, BMD
significantly reduces both the required number of iterations
and computation time. When Ns = 500 and ε = 0.01, the
number of iteration and computation time is reduced by 60.0%
and 67.9%, respectively. It reflects the effectiveness of the
MBD in coping with a large-scale problem.

TABLE VI
CONVERGENCE RATE COMPARISON

ε Ns
Iteration Tc (s)

BD MBD BD MBD
0.05 10 97 14 158.3 31.3
0.01 10 312 36 961.5 71.8
0.05 100 75 8 630.7 43.37
0.01 100 206 45 10744.1 350.6
0.05 500 43 14 2656.5 531.3
0.01 500 100 40 14665.4 4699.0

In each iteration, $ω is determined to generate optimal
cuts in (38) with xm, which is obtained by solving the MILP
master problem in (37). To guarantee the convergence of the
proposed MBD algorithm, only traditional linear programming
relaxation and cutting plane method are employed in GUROBI
to fetch the exact solution of xm, including Gomory mixed-
integer cuts [57], mixed-integer rounding cuts [58] and flow
cover cuts [59].

VII. CONCLUSION

Based on the ambiguity set reflecting event-related uncer-
tainties, a proactive operation strategy is proposed for SOs
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to enhance system resilience under hurricanes. Several cases
are tested at IEEE-RTS systems to validate the effectiveness
of the proactive strategy. Considering the temporal and spa-
tial correlation characteristic of hurricane impacts, migration
among CDCs and delay tolerance of workload are employed to
cope with extreme conditions. As demonstrated in simulation
results, CDCs could be treated as a kind of efficient resilient re-
source to mitigate catastrophic damage of hurricanes. Besides,
the proposed MBD algorithm with hybrid cuts can effectively
accelerate convergence by reducing the number of iterations
and computation time compared to the classic BD method.

APPENDIX
PROOF OF THEOREM 1

Proof : With the constraints {ET$ω = d,$ω ≥ 0} in (38),
feasible region of dual variables $ω in QDRO

′(x, ξω) could
be denoted by a polyhedron L, and finite set of extreme points
in L is represented by EP(L). The second-stage optimization
problem QDRO is formulated as a complete recourse problem,
EP(L) 6= ∅, and it is assumed there are Q points in EP(L).
According to the Partitioning Theorem in [60], the original
problem in (36) is equivalent to the problem as follows:

min cTx+ τDROz + (1− ρ)η +
∑
ω∈Ω

π0
ω(z+

ω − z−ω ) + ϑ

s.t. $T
q,ω(hω −Gx)− η ≤ vω, ∀ω ∈ Ω, ∀q ∈ EP(L)

ρ$T
q,ω(hω −Gx) +

1− ρ
1− β

vω ≤

z+
ω − z−ω + ϑ, ∀ω ∈ Ω, ∀q ∈ EP(L)

z+
ω + z−ω − z ≤ 0, ∀ω ∈ Ω (40)

In the proposed algorithm with hybrid cuts, the convergence
is guaranteed by the optimal cuts as follows:

$n,T
ω (h−Gx−Mξω)− η ≤ vω, ∀ω ∈ Ω, ∀n ≤ m

ρ$n,T
ω (h−Gx−Mξω) +

1− ρ
1− β

vω ≤

z+
ω − z−ω + ϑ, ∀ω ∈ Ω, ∀n ≤ m (41)

where $n,T
ω are derived by solving the subproblem in (38)

and added to the master problem during each iteration, and
the algorithm that can be terminated before all extreme points
are included, i.e., m ≤ Q.

Gx + Wyω∗ ≥ hω∗ are the second stage constraints of
scenario ω∗, which is most costly during current iteration. All
extreme points $T

q,ω∗, ∀q ∈ EP(W) of the worst scenario ω∗
are added to master problem by primal cuts as follows:

Gx+ Wyω∗ ≥ h−Mξω∗

dT yω∗ − η ≤ vω∗

ρdT
ω yω∗ +

1− ρ
1− β

vω∗ ≤ z+
ω∗ − z−ω∗ + ϑ

z, z+
ω , z

−
ω vω ≥ 0, x ∈X (42)

In the mth iteration, the number of extreme points con-
sidered by optimal cuts is m and the number of extreme
points provided by primal cuts is Q −m. The extra extreme
points effectively improve the lower bound compared to classic
Benders Decomposition and result in a fewer number of
iterations. It finishes the proof.
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