DOI: 10.19666/j.rlfd.202303091

基于 WOA-KELM 算法的风电机组 智能故障诊断研究

安留明,沙德生,张 庆,李 芊,刘潇波,张鑫赟 (中国华能集团清洁能源技术研究院有限公司,北京 102209)

[摘

窗 要]针对风电机组存在的典型故障进行了归纳,选取某风场风电机组故障频次较高的变流系统、发电机系统、变桨系统、辅助电源系统故障数据和非故障数据进行故障诊断研究,分别采用极限学习机(ELM)、最小二乘支持向量机(SVM)、核极限学习机(KELM)和鲸鱼群优化算法(WOA)的WOA-KELM 算法建立了故障诊断模型,同时采用拉普拉斯分数对模型特征变量重要程度进行排序和选取,WOA-KELM 算法通过优化 KELM 算法的正则化参数 C 与核参数 γ 取得了更好的诊断效果。研究表明:不同样本数量下4种算法4 对非故障类型的诊断准确率均为 100%;采用拉普拉斯分数对 WOA-KELM 算法进行特征筛选后测试样本的平均诊断准确率从 88.0%提高到 93.2%;WOA-KELM 算法在样本数量为 250~500内进行特征筛选后的诊断准确率达到最大值 96.0%。这证明该模型可以有效实现风电机组的故障诊断,为现场运维人员提供指导与参考。

[关 键 词]风电机组;故障诊断; WOA-KELM 算法; 拉普拉斯分数

[引用本文格式] 安留明, 沙德生, 张庆, 等. 基于 WOA-KELM 算法的风电机组智能故障诊断研究[J]. 热力发电, 2023, 52(12): 131-139. AN Liuming, SHA Desheng, ZHANG Qing, et al. Research on intelligent fault diagnosis of wind turbine based on WOA-KELM algorithm[J]. Thermal Power Generation, 2023, 52(12): 131-139.

Research on intelligent fault diagnosis of wind turbine based on WOA-KELM algorithm

AN Liuming, SHA Desheng, ZHANG Qing, LI Qian, LIU Xiaobo, ZHANG Xinyun (China Huaneng Clean Energy Research Institute Co., Ltd., Beijing 102209, China)

Abstract: The typical faults of wind turbines are summarized. The fault data and non-fault data of converter system, generator system, variable propeller system and auxiliary power system with high fault frequency of wind turbines in a wind farm are selected for fault diagnosis research. The fault diagnosis model is established by ELM, SVM, KELM and WOA-KELM algorithms respectively. At the same time, Laplacian scores are used to sort and select the importance degree of model characteristic variables. WOA-KELM algorithm achieves better diagnostic effect by optimizing the regularization parameter *C* and kernel parameter γ of KELM algorithm. The results show that, the diagnostic accuracy of the four algorithms for non-fault types is 100% under different sample numbers. The average diagnostic accuracy of WOA-KELM algorithm improves from 88.0% to 93.2% after feature screening by using Laplace scores. In the range of 250~500 samples, the diagnostic accuracy of WOA-KELM algorithm reaches the maximum of 96.0% after feature screening. It is proved that this model can effectively realize the fault diagnosis of wind turbine, and provide guidance and reference for field operation and maintenance personnel. **Key words:** wind turbine; fault diagnosis; WOA-KELM algorithm; Laplace fraction

近年来,我国可再生能源发展迅猛,截至 2022年底,我国可再生能源装机占比历史性超过煤 电装机,达到 12.13 亿 kW,占全国发电装机的 47.3%^[1]。风电作为一种清洁低碳的可再生能源,其

收稿日期: 2023-03-24

基 金 项 目: 中国华能集团清洁能源技术研究院有限公司研究与开发基金项目 (QNYJJ22-18)

Supported by: Research and Development Fund Project of Huaneng Clean Energy Institute (QNYJJ22-18)

第一作者简介: 安留明(1995),男,硕士,工程师,主要研究方向为风电机组状态监测与故障诊断, lm_an@qny.chng.com.cn。

装机容量和单机容量呈逐年递增趋势。国家能源局 统计数据显示,到 2022 年末,我国风电机组累计装 机容量突破 3.1 亿 kW, 同比增长 11.2%^[2]。统计数 据显示 2021 年我国新增风电机组中 3.0~5.0 MW 风 电机组占比达到 56.4%,同比增长 22.0%^[3]。值得注 意的是,由于风电机组"抢装潮"导致我国目前存 在大量的单机容量较小的老旧风电机组。据统计 2020年我国运行时间 10年以上的风电机组装机容 量已经达到 815 万 kW, 其中小机组占比超过 90%, 且每年平均以44%的速度增长[4]。由于技术、管理 等经验积累还未形成体系等客观原因, 部分早期投 运机组出质保期后,设备故障率大幅度提高,严重 降低了风机的可利用时长,造成了严重的发电量损 失,极大地影响了风电场的盈利能力[5]。通过故障 诊断技术发现机组存在安全隐患以进行早期的故 障治理,进而提高风场运行可靠性及经济效益已经 成为了行业内的共识[6]。

目前,风电机组故障诊断方面的研究方法主要 包括时域频域分析方法、知识规则挖掘法和人工智 能方法。时域频域分析方法主要对风电机组的振动 信号进行计算与分析,通过计算相应时域波形指 标、峰值指标和脉冲指标结合频谱变换方法提取故 障特征频率,可以实现定性的故障诊断[7-9]。知识规 则挖掘法主要采用失效模式与影响分析(FMEA)、 故障树分析法 (FTA) 等方法提取故障异常特征, 经过故障模式识别和故障原因推理后建立故障知 识库以实现对设备的故障诊断[10-12]。人工智能诊断 方法针对风电机组数据采集与监视控制系统

(supervisory control and data acquisition, SCADA) 和状态监控系统(condition monitoring system, CMS)监测的风速、转速、功率、电流、电压、温 度、压力、振动以及提取的各种时域频域特征等多 种类型的数据进行挖掘分析,尤其是难以在监测参 数有直观表现的大部件异常,采用机器学习的方法 可以建立目标变量与各输入变量的映射模型, 机组 部件出现异常前一段时间内相关参数会发生变化, 反映到模型上表现为预测目标变量与真实目标变量 间残差值会增大,通过合理方法设置故障的判别阈 值,可以实现故障的提前诊断预警。韩万里等[13]采用 Relief算法筛选了风电变桨系统故障特征参数,采用 数据融合MEST算法建立了变桨系统故障预测模型, 实现了风电变桨系统的故障预警。邓子豪等[14]采用 Rlief算法结合核密度-均值法提取了反映偏航齿轮 箱运行状态的SCADA参数和故障特征指标,实现了 偏航齿轮箱故障正常、磨损、断齿故障的诊断。张萍 等[15]针对滚动轴承振动故障信号提取精度低的问 题,采用鲸鱼群优化算法(WOA)优化的变分模态 分解能量熵算法提取了故障特征,采用改进的支持 向量机对滚动轴承进行诊断,准确率高达99.2%。

本文建立了基于 WOA-KELM 算法的风电机组 故障诊断模型,采用拉普拉斯分数对模型输入特征 进行重要性排序和选取,实现了风电机组变流系 统、发电机系统、变桨系统、辅助电源系统4种不 同部位早期故障的诊断识别,可以为运维人员提供 指导,对于降低设备故障率、保障风电机组安全稳 定运行具有重要意义。

1风电机组及其故障类型

1.1 风电机组

目前我国广泛使用的双馈异步水平轴风电机 组(图1)主要由叶轮系统、传动系统、液压与制 动系统、发电机系统、变流系统、变桨系统、偏航 系统、控制和保护系统等组成[16-17]。各子系统的组 成与工作原理为:叶轮系统由3个叶片和轮毂组成, 主要功能是实现风能到机械能转换,自然风流经叶 片产生压力差驱动叶片转动,轮毂把叶片作用力传 递到传动系统。传动系统主要包括主轴、齿轮箱、 主轴承和联轴器,主要作用是能量传递和转速提 升。叶片传来的机械能经过传动系统传递给发电 机,齿轮箱用于提升主轴转速以达到发电机所需转 速。液压与制动系统主要包含油泵、油箱、过滤器、 输油管路、液压阀门和制动执行机构等装置,液压 系统提供高速轴制动、偏航制动所需的液压动力, 配合制动装置共同完成制动动作。发电机系统主要 由发电机及前后轴承组成,主要实现机械能到电能 的能量转换。齿轮箱高速端传来的力矩带动发电机 旋转切割磁力线产生电流,经过整流、逆变和变压 后并入电网。变流系统主要由变频柜与各种电力电 子器件组成,通过对发电机转子进行励磁,使得发 电机定子侧输出电压的幅值、频率和相位满足并网 要求,此外变流系统还能起到雷击、过流、过压、 过温的保护功能。变桨系统主要由变桨电机、滑环、 超级电容柜等组成,通过改变桨距角的大小可以调 节风轮捕获风能的功率,同时当桨距角为90°时,叶 片处于顺桨状态,叶片实现了空气动力学刹车。偏航 系统主要由偏航驱动器、偏航电机、凸轮开关及旋转

http://rlfd.cbpt.cnki.net

编码器等组成。测风系统风速风向仪测得风向发生 改变时将电信号传递给控制系统,经过比较处理后 偏航电机驱动机舱旋转,使得叶轮对准风向。控制和 保护系统主要由各种传感器、控制器以及各种执行 机构等组成,主要功能包括机组的启停、变速恒频控制、变桨距控制、偏航控制等。当传感器传来的信号与设定值不一致,经过PLC的运算和处理,控制器发出指令,调整系统到相应的运行状态。

1.2 常见的故障类型

随着单机容量越来越大,风电机组的传动链结 构越来越复杂和紧凑。同时由于机组长期处于变转 速变载荷工况下运行,气候环境非常恶劣,又处于 高空运行,这给机组运行维护造成很大困难,因而 风电机组的故障率较高。一旦风机发生故障,相应 的停机时间较长,维修成本很高。针对我国广泛采 用的变桨双馈异步风电机组常见的故障类型进行 总结对于合理安排维修策略、降低运维成本具有重 要意义。

风电机组齿轮箱常见的故障类型包括齿轮损 伤、轴承损坏、断轴等。其中,齿轮损伤又具体包 括:齿形误差、齿面磨损、疲劳点蚀、齿面胶合、 齿面偏心、断齿等典型故障。发电机中最常见的故 障部件是轴承、定子和转子。定子转子故障的主要 形式有绕组断路、绕组短路、绕组连接异常、转子 条及端环断裂、气隙偏心等。风电机组的叶片作为 吸收风能关键部件长期处于恶劣的环境中运行,在 湿气侵蚀、强风、雷击等破坏性因素影响下容易产 生偏斜、弯曲、疲劳裂纹、叶片断裂等故障形式。 风电机组偏航系统常见故障模式包括偏航位置不 准确、偏航传感器损坏、偏航计数器故障和偏航电 机故障等。变桨系统的典型故障包括变桨驱动器故 障、备用电源蓄电池故障、变桨电机故障、角度编 码器故障、变桨限位开关故障等。

2 WOA-KELM 算法

2.1 KELM 算法

极限学习机(extreme learning machine, ELM) 是一种基于单隐层前馈神经网络的机器学习方法, 与传统神经网络使用梯度下降法更新模型参数不 同,它随机确定输入层与隐含层间的网络权值,直 接计算隐含层到输出层的权值矩阵得到输出值。核 极限学习机(kernel based extreme learning machine, KELM)是基于极限学习机并结合核函数所提出的 改进算法,KELM 有效利用了 ELM 训练速度快且 训练过程简单的优点,有效避免了传统梯度下降法 容易陷入局部最优值和迭代次数过大的缺点,将在 低维空间不可分割的数据集映射到高维空间实现 线性可分,模型预测准确度进一步提升,在分类与 建模领域得到了广泛应用^[18-20]。

ELM 是一种单隐含层前馈神经网络(图 2), 其学习目标函数 *F*(*x*)可用矩阵表示为:

$$F(\mathbf{x}) = \mathbf{h}(\mathbf{x}) \times \boldsymbol{\beta} = \mathbf{H} \times \boldsymbol{\beta} = \mathbf{L}$$
(1)

式中: *x* 为输入向量; *F*(*x*)为神经网络的输出; *h*(*x*) 和 *H* 均为隐含层节点输出; *β*为隐含层与输出层之间的权值; *L* 为期望输出。

神经网络学习过程可以看做线性方程组求解问题,引入正则化系数 C 和单位矩阵 I,则输出权值**β**的最小二乘解为式(2)。

http://rlfd.cbpt.cnki.net

图 2 单隐含层前馈神经网络结构 Fig.2 Structural diagram of single hidden layer feedforward neural network

$$\boldsymbol{\beta} = \boldsymbol{H}^{\mathrm{T}} \left(\boldsymbol{H} \boldsymbol{H}^{\mathrm{T}} + \frac{\boldsymbol{I}}{\boldsymbol{C}} \right)^{-1} \boldsymbol{L}$$
 (2)

引入核函数到 ELM 中,核矩阵为:

$$\boldsymbol{\Omega}_{\text{ELM}} = \boldsymbol{H}\boldsymbol{H}^{\mathrm{T}} = \boldsymbol{h}(\boldsymbol{x}_{i})\boldsymbol{h}(\boldsymbol{x}_{j}) = \boldsymbol{K}(\boldsymbol{x}_{i},\boldsymbol{x}_{j}) \qquad (3)$$

式中: xi、xj为试验输入向量。则可将式(1)改写为:

$$F(\mathbf{x}) = HH^{\mathrm{T}} \left(HH^{\mathrm{T}} + \frac{I}{C} \right)^{-1} L = \begin{bmatrix} K(\mathbf{x}, \mathbf{x}_{1}) \\ \vdots \\ K(\mathbf{x}, \mathbf{x}_{n}) \end{bmatrix} \left(\mathbf{\Omega}_{\mathrm{ELM}} + \frac{I}{C} \right)^{-1} L$$

$$(4)$$

式中: (x₁, x₂, ..., x_n)为给定训练样本; n 为样本数 量; K(·)为核函数。

在核函数中,选用常用的径向基函数(RBF) 作为核函数。RBF 内核可以定义为:

 $K(x,y) = \exp(-\gamma ||x - y||^2)$ (5) 式中: γ 为内核参数,由于 KELM 模型的结果高度 依赖于正则化参数 *C* 和核参数 γ 的选择,因此需要 对 2 个参数进行有效优化。

2.2 WOA

Mirjalili Seyedali 等人于 2016 年首次提出了基 于元启发式的鲸鱼群优化算法(WOA),该方法能 够快速求解,所需参数较少,且具有较好的全局收 敛性。这种方法模拟了座头鲸的围捕、捕食和搜索 3 种捕食行为。该算法使用螺旋结构来对座头鲸的 气泡网捕食机制进行模拟,座头鲸首先潜入海底深 处,然后以螺旋形向上游动,吐出许多大小不一的 气泡,最后在猎物周围形成一个圆柱形或管状的气 泡网,迫使猎物进入气泡网的中心,它便在气泡圈 内直立地张开大嘴,吞下网集的猎物^[21-23]。

该算法的具体步骤如下:

1) 参数初始化 首先初始化鲸鱼数量、最大迭 代次数和鲸鱼位置。第*i*个鲸鱼的位置初始化为:

$$X_{i} = r \times (b_{ub} - b_{lb}) + b_{lb}$$
(6)

式中: r 为[0,1]之间的随机数; X_i 的取值范围为 [b_{1b}, b_{ub}]; b_{1b} 为取值下界; b_{ub} 为取值上界。

2) 围捕猎物 座头鲸能够识别猎物位置并逐步向猎物位置逼近包围猎物,座头鲸按照以下方程 组进行下一步的位置更新:

$$\begin{cases} \boldsymbol{D} = |\boldsymbol{C} \cdot \boldsymbol{X}^{*}(t) - \boldsymbol{X}(t)| \\ \boldsymbol{X}(t+1) = \boldsymbol{X}^{*}(t) - \boldsymbol{A} \cdot \boldsymbol{D} \\ \boldsymbol{A} = 2\boldsymbol{a} \cdot \boldsymbol{r}_{1} - \boldsymbol{a} \\ \boldsymbol{C} = 2\boldsymbol{r}_{2} \\ \boldsymbol{a} = 2 - 2t / t_{\text{max}} \end{cases}$$
(7)

式中: *A*、*C* 为系数向量; *X**(*t*)为当前最优解位置向量; *X*(*t*)为当前解位置向量; *r*₁、*r*₂ 为随机数,取值范围为[0,1]; *t* 为当前迭代次数; *t*_{max} 为最大迭代次数; *a* 为收缩因子,在迭代过程中线性下降至 0。

3) 捕食搜索 座头鲸的捕食方式包括收缩包 围捕食和螺旋气泡网捕食。当|A|≤1 时,此时鲸鱼 按照式(7)靠近食物觅食。螺旋气泡网捕食按照对数 螺旋方程表示为:

$$\begin{cases} \boldsymbol{X}(t+1) = \boldsymbol{D}' \cdot e^{bl} \cdot \cos(2\pi l) + \boldsymbol{X}^{*}(t) \\ \boldsymbol{D}' = |\boldsymbol{X}^{*}(t) - \boldsymbol{X}(t)| \end{cases}$$
(8)

式中:**D**′为模拟鲸群与猎物之间的距离; b 为对数 螺旋形状参数; l 为随机数,取值范围为[-1,1]。

当|A|>1 时,鲸鱼群将移动远离猎物,搜索寻找一个更加适合的猎物,其对应的位置更新数学模型为:

$$\begin{cases} \boldsymbol{D} = |\boldsymbol{C} \cdot \boldsymbol{X}_{rand}(t) - \boldsymbol{X}(t)| \\ \boldsymbol{X}(t+1) = \boldsymbol{X}_{rand}(t) - \boldsymbol{A} \cdot \boldsymbol{D} \\ \boldsymbol{A} = 2\boldsymbol{a} \cdot \boldsymbol{r}_{1} - \boldsymbol{a} \\ \boldsymbol{C} = 2\boldsymbol{r}_{2} \\ \boldsymbol{a} = 2 - 2t / t_{max} \end{cases}$$
(9)

4)迭代终止 当迭代次数达到最大迭代次数
 *t*max时,收缩因子 *a* 也线性减小到 0,迭代终止。反
 之,则继续迭代直至满足迭代终止条件为止。

2.3 WOA 优化 KELM 流程

以核极限学习机方法为主线,采用 WOA 优化 核极限学习机的正则化参数 *C* 和核参数γ的选取。 图 3 为采用 WOA 优化 KELM 参数流程。由图 3 可 以看出,首先初始化鲸群种群数量 *N*、最大迭代次 数 *t*max、鲸群位置向量,其中,正则化参数 *C* 和核 参数 γ映射为鲸鱼群位置(*C*, γ)。然后以风机故障 诊断分类准确率为适应度函数,计算每个鲸鱼位置 对应的适应度,通过判断鲸鱼位置更新概率值 *p* 和 系数向量 *A*,选择对应的迭代公式进行鲸鱼位置更 新,直到满足最大迭代次数条件,输出最优的 KELM 的正则化参数 *C* 和核参数γ。针对原始的样本数据, 划分训练集和测试集后进行数据归一化处理,然后 使用训练集数据训练得到故障诊断模型,将测试集 数据代入训练好的模型中进行故障预测分类。

图 3 WOA 优化 KELM 参数的流程 Fig.3 Flow chart of KELM parameters optimized by WOA

3风机故障诊断模型

3.1 数据集介绍

风机 SCADA 主要参数见表 1。

表 1 风机 SCADA 主要状态参数 Tab.1 Main state parameters of fan SCADA

风机系统	参数	单位
	机舱变频(电源)柜温度	°C
	网(机)侧电抗温度	°C
	网(机)侧半导体温度	°C
变流系统	滤波板温度	°C
	有功功率	kW
	无功功率	kVA
	最大故障电流	А
	变桨电机温度	°C
变桨系统	变桨电机扭矩	Nm
	叶片角度	(°)
	偏航变频器温度	°C
偏航系统	偏航功率	kW
	机舱位置	(°)
住动系统	齿轮箱轴承温度	°C
传动系统	齿轮箱油池温度	°C
	驱动端发电机轴承温度	°C
发电机系统	非驱动端发电机轴承温度	°C
	最大发电机绕组温度	°C
	机舱内温度	°C
	机舱电池电压	V
却龄乃状加亥弦	机舱电池温度	°C
们加以冶米尔尔	平均风速	m/s
	风向	(°)
	环境温度	°C

本文以辽宁某装机容量 100.5 MW 风场为研究 对象,该风场共装机 67 台,风机单机容量 1.5 MW, 风机类型为变桨双馈型机组,风机的切入风速为 3 m/s,切出风速为 20 m/s,额定风速 11 m/s,额定 转速 17.4 r/min。采集了该风场 67 台风电机组 2019—2021 年 3 年 SCADA 运行数据,每台风机样 本共 143 549 条。该风场 SCADA 系统每 10 min 采 样进行数据存储,主要包括温度、功率、电流、电 压、风速、转速、扭矩、叶片角度、机舱位置等 50 个风电机组实时运行状态参数的平均值。

3.2 故障诊断流程与步骤

根据辽宁某风场的运行台账,选取该风场 2019—2021年风电机组发生频次较高的变流系统 故障、发电机系统故障、变桨系统故障、辅助电源 系统故障4种故障数据和非故障数据共5种数据类 型构成1组样本数据。分别选取了每种故障停机前 50、100、150、200、400 min 时间范围内的 SCADA 数据作为样本数据,各时间范围对应的样本数据量 依次为125、250、375、500、1000,非故障数据选 取和每种故障数据相同数据量大小的无停机记录 的正常运行数据作为样本数据。每种故障数据选取 了5条发生频次最高的故障停机记录,风机停机样 本选取结果见表 2。针对5种类型的样本数据进行 训练集和测试集的划分,训练集占比 80%,测试集

占比 20%。风机故障诊断流程如图 4 所示。

表 2 风机故障停机样本选取 Tab.2 Sample selection for fan fault shutdown

故障 部位	故障现象	故障原因	机组 编号
	变频器一般性故障	线路松动	39
变流 系统	变频器一般性故障	线路松动	41
	变频器一般性故障	线路松动	44
	变频器一般性故障	线路松动	67
	变频器检测脱网	接线松动	49
发电机 系统	发电机无转速	发电机编码器损坏	24
	变频器一般性故障	发电机损坏	27
	变频器故障	发电机损坏	59
	发电机转子 B 相开路	发电机损坏	35
	发电机转速过小	超速继电器损坏	55
	叶片1顺桨位置超时	轮毂接线松动	50
	叶轮转速信号不同	滑环编码器接线松动	21
变桨	叶片2驱动错误	变桨柜接线松动	28
11-76	叶片开裂	变桨轴承损坏	54
	叶轮超速刹车	支撑杆松动	40
	400 V 电源故障	PLC 误动作	32
辅助 电源 系统	箱变 400 V 电源断开	变压器温度过高,超温保护	50
	电池电压低	电池接线松动	65
	400 V 电源故障	电池馈电	47
	400 V 电池接触器故障	PLC 误报	43

图 4 风电机组故障诊断流程 Fig.4 Wind turbine fault diagnosis flowchart

为了降低由于 SCADA 各个状态参数间量纲的 差异造成模型误差与模型训练时长,加快模型的收 敛速度,对样本数据进行归一化处理。然后选择是 否采用拉普拉斯分数对模型输入特征个数进行打 分和筛选,分别采用 ELM、SVM、KELM、WOA-KELM 4 种算法建立风机故障诊断模型,对 5 种类 型的风机样本数据进行模型训练,随后将测试集数 据代入训练好的模型中进行故障类型预测,计算故 障类型预测正确的个数与样本故障类型总数的比 值得到故障诊断准确率。通过绘制混淆矩阵可以进 一步观察各个故障类型的诊断准确率。

3.3 模型特征优化

由于故障诊断模型中样本数据集的输入变量 多达 50 个,造成了模型计算量较大且数据冗余度 很高。为了提高模型故障分类的准确率,降低输入 特征的维度,减少模型数据的冗余度,本文引入拉 普拉斯分数对模型的输入参数进行选取优化。拉普 拉斯分数通过对1个训练集样本的特征进行打分, 计算得到各个样本特征的分数,从中选取分数最低 的 k 个特征作为模型的输入特征,拉普拉斯分数的 具体计算步骤如下^{[24-25}]</sup>:

设样本数据集有 *m* 个样本,构建一个具有 *m* 个 节点的最邻近图 *G*,第*i* 个节点对应 *x_i*,若 *x_i*和 *x_j* 是连通的,则构建权重矩阵 *S*:

$$S_{ij} = e^{-\frac{\|x_i - x_j\|^2}{t}}$$
 $i, j = 1, 2, \cdots, m$ (10)

式中: *S_{ij}*为权重矩阵 *S* 中各个元素; *t* 为常数; ||•|| 为欧氏距离。

根据矩阵 *S* 计算得到拉普拉斯矩阵 *L=D–S*,其 中 *D* 为由 *S* 生成的对角矩阵 $D_{ii} = \sum_{j=1}^{n} S_{ij}$,定义第 *r* 个特征的拉普拉斯分数为:

$$L_{r} = \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} \left(x_{ir} - x_{jr} \right)^{2} \boldsymbol{S}_{ij}}{\sum_{i=1}^{n} \left(x_{ir} - f_{r} \right)^{2} \boldsymbol{D}_{ii}}$$
(11)

式中: f, 为样本集所有特征中的第 r 个特征的平均 值。当式(11)的分子值较小时,表示样本数据此特征 的差异较小,保留了更多的局部信息;当分母值较 大时,表示此特征的差异较大,具有更好的判别性, 所以拉普拉斯分数愈小,则此特征愈重要。

4 结果与分析

4.1 无特征选择的验证结果

分别采用 ELM、SVM、KELM、WOA-KELM 4 种算法在样本数据集分别为 125、250、375、500、 1 000 条时依次建立和评估故障诊断模型,选取每 种样本数据集的 80%作为训练集以建立故障诊断 模型,样本数据集中剩余 20%数据作为测试集以对 诊断模型进行准确性评估。根据诊断模型预测 4 种

http://rlfd.cbpt.cnki.net

故障类型和非故障类型的诊断正确个数累加和与 总样本个数作商得到模型故障诊断准确率 *P*,相应 的计算公式为:

$$P = \frac{T_{11} + T_{22} + T_{33} + T_{44} + T_{55}}{\sum T_{ij}} \times 100\%$$
(12)

式中: P 为模型故障诊断准确率; T_{ij}为第 i 种故障 类别被预测为第 j 种故障类别的个数, i、j 的取值 范围为 1、2、3、4、5。各算法不同样本数下的模型 诊断准确率见表 3。

表 3 各算法不同样本数下的诊断准确率 单位: % Tab.3 Diagnostic accuracy of each algorithm with different sample numbers

样本数	故障类型	ELM	SVM	KELM	WOA- KELM
	变流系统故障	60	100	100	100
	发电机系统故障	60	60	100	100
125	变桨系统故障	40	60	60	60
	辅助电源系统故障	60	100	60	100
	非故障	100	100	100	100
	故障诊断准确率	64.0	84.0	84.0	92.0
	变流系统故障	100	100	100	80
	发电机系统故障	20	60	90	100
250	变桨系统故障	0	60	70	80
250	辅助电源系统故障	100	100	70	100
	非故障	100	100	100	100
	故障诊断准确率	64.0	84.0	86.0	92.0
	变流系统故障	100	80	80	60
	发电机系统故障	0	67	93	100
275	变桨系统故障	87	0	27	80
375	辅助电源系统故障	73	100	80	100
	非故障	100	100	100	100
	故障诊断准确率	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	88.0		
	变流系统故障	95	90	85	95
	发电机系统故障	系统故障 60 100 100 1系统故障 60 60 100 1系统故障 40 60 60 2源系统故障 60 100 100 2源系统故障 60 100 100 20 60 90 系统故障 100 100 100 1系统故障 0 60 70 2源系统故障 100 100 70 20 60 90 系统故障 0 60 70 23源系统故障 100 100 100 25 85 64.0 84.0 86.0 系统故障 100 100 100 100 25 87 0 27 27 23源系统故障 73 100 80 80 14 100 100 100 100 26 100 100 100 100 26 100 100 100 100 <td>100</td>	100		
500	变桨系统故障	45	0	15	85
300	辅助电源系统故障	30	100	90	100
	非故障	100	100	100	100
	故障诊断准确率	73.0	63.0	75.0	96.0
	变流系统故障	90	100	45	100
	发电机系统故障	0	23	68	35
1 000	变桨系统故障	0	25	33	20
1 000	辅助电源系统故障	100	100	100	100
	非故障	100	100	100	100
	故障诊断准确率	58	70	69	71
不同样本	平均故障诊断准确率	66.0	74.0	78.0	88.0

由表 3 可知,不同算法、不同样本数据量非故 障数据的诊断准确率都是 100%。4 种故障类型的诊 断准确率随着样本数据量和算法种类的不同而有 所差异,其中 ELM 算法发电机系统和变桨系统故 障识别效果较差,诊断准确率稳定性最差。WOA-KELM 算法不同样本数量的平均故障诊断准确率达 到 88.0%, 在样本数为 500 条时达到最大的故障诊断 准确率(96.0%), 效果最佳。

4.2 有特征选择的验证结果

采用拉普拉斯分数公式计算得到样本数据中 50种特征的拉普拉斯分数,并按照从小到大进行排 序,取样本数量为250条,采用循环遍历法依次选 取2、4、6……50个特征训练测试模型,WOA-KELM 算法在不同特征数量下的诊断准确率如图5所示, WOA-KELM 算法有特征筛选的适应度迭代曲线如 图6所示。

图 5 WOA-KELM 算法不同特征数量下的诊断准确率 Fig.5 Diagnosis accuracy of WOA-KELM algorithm with different numbers of features

图 6 WOA-KELM 算法有特征筛选的适应度迭代曲线 Fig.6 Fitness iteration curve of WOA-KELM algorithm with feature selection

图 7 为 WOA-KELM 算法取最佳特征数量时的 混淆矩阵。图 7 中类别标签"1""2""3""4""5" 分别对应于风电机组的"变流系统故障""发电机系 统故障""变桨系统故障""辅助电源系统故障""无 故障" 5 种类型。图 7 中行对应预测的类,列对应 于真实的类,对角线上单元格对应正确分类的预测 结果,非对角线上的单元格对应错误分类的观察结 果。图 7 右下角单元格显示总体准确性。

	条件矩阵						
	1	10 20.0%	0 0%	2 4.0%	0 0%	0 0%	83.3% 16.7%
	2	0 0%	10 20.0%	0 0%	0 0%	0 0%	100% 0%
1标类	3	0 0%	0 0%	8 16.0%	0 0%	0 0%	100% 0%
输出目	4	0 0%	0 0%	0 0%	10 20.0%	0 0%	100% 0%
	5	0 0%	0 0%	0 0%	0 0%	10 20.0%	100% 0%
		100% 0%	100% 0%	80.0% 20.0%	100% 0%	100% 0%	96.0% 4.0%
		1	2	3 日志	4 示光	5	

由图 5一图 7 可知,当特征数量为 36 时,WOA-KELM 算法的诊断准确率达到最大值 96.0%。由图 7 可知,特征筛选后的 WOA-KELM 算法对 5 种类型样本数据的诊断准确率依次为 100%、100%、80%、100%、100%,模型的总体诊断准确为 96.0%,相对特征筛选前诊断准确率提高了 4 百分点,变流系统的故障诊断准确率从表 3 特征筛选前的 80%提高到了 100%。

为进一步评估不同样本数据量下 WOA-KELM 算法采用拉普拉斯分数进行特征个数筛选后的诊 断准确率,依次选取样本数据为 125、250、375、 500、1000条,采用 WOA-KELM 算法进行特征筛 选后建立风机故障诊断模型并进行诊断准确率评 估,评估结果见表 4。

表 4 不同样本数下 WOA-KELM 算法的诊断准确率 Tab.4 Diagnostic accuracy of WOA-KELM algorithm under different sample numbers

样本数量	125	250	375	500	1 000
变流系统故障/%	100	100	100	95	93
发电机系统故障/%	100	100	100	100	100
变桨系统故障/%	60	80	80	85	35
辅助电源系统故障/%	100	100	100	100	100
非故障/%	100	100	100	100	100
平均诊断准确率/%	92.0	96.0	96.0	96.0	86.0
最佳特征个数	24	38	18	24	26

由表 4 可知, WOA-KELM 算法采用拉普拉斯 分数进行特征筛选后在不同样本数量下的平均故 障诊断准确率达到 93.2%,相对不进行特征筛选故 障诊断准确率提高了 5.2 百分点。同时,样本数量 大小对模型精度有所影响,样本数量在 250~500 内, 诊断准确率最高为 96.0%, 样本数量越少则各种故 障越接近风机故障停机时间,存在越多的相似特 征,不利于故障特征分类; 样本数据过多则存在大 量故障早期微弱特征数据,故障特征不明显,故障 诊断准确性较低。

5 结 论

本文建立了一种基于 WOA-KELM 算法的风电 机组故障诊断模型,采用拉普拉斯分数选取模型的 输入特征个数,实现了风电机组不同系统下不同类 型故障的诊断识别。

1)分别采用 ELM、SVM、KELM、WOA-KELM 4 种算法对风电机组 5 种故障类型的样本数据进行 建模训练与测试评估,不同样本数量下 4 种算法的 平均故障诊断准确率分别为 66.0%、74.0%、78.0%、 88.0%,非故障类型的诊断准确率均为 100%。

2)采用拉普拉斯分数对 WOA-KELM 算法建 模数据进行特征筛选后,有效降低了模型数据的冗 余度,模型的故障诊断准确率得到了进一步提高, 测试样本的平均诊断准确率从88.0%提高到93.2%。

3) 样本数量过少或过多都会降低模型诊断精度, 样本数量在 250~500 内, WOA-KELM 算法进行特征筛选后诊断准确率达到最大值 96.0%。

[参考文献]

- [1] 徐蔚冰. 我国可再生能源进入大规模跃升新阶段[N]. 中国经济时报, 2023-02-14(5).
 XU Weibing. China's renewable energy enters a new stage of large-scale leap[N]. China Economic Times, 2023-02-14(5).
- [2] 国家能源局发布 2022 年全国电力工业统计数据[J]. 电力勘测设计, 2023(1): 24.
 National Energy Administration releases the statistical data of the electric power industry in 2022[J]. Electric Power Survey & Design, 2023(1): 24.
- [3] 2021年中国风电吊装容量统计简报[J]. 风能, 2022(5): 38-52. China mind annua bainting annuality at statistics in 2021(II)

China wind power hoisting capacity statistics in 2021[J]. Wind Energy, 2022(5): 38-52.

[4] 马小萍. 我国老旧风电机组更换研究[J]. 风能, 2021(4):66-71.

MA Xiaoping. Research on the replacement of old wind turbines in China[J]. Wind Energy, 2021(4): 66-71.

[5] 雷鸣, 赵青, 程施霖, 等. "上大压小"风电场改造项目的风电机组布局优化方案研究[J]. 太阳能, 2023(2): 81-86.
LEI Ming, ZHAO Qing, CHENG Shilin, et al. Study on optimization scheme of wind turbines layout in the "large-replace-small wind turbines" wind farm renovation project[J]. Solar Energy, 2023(2): 81-86.

[6] 邓巍,李国庆,林昇,等. 扫频分析技术在风电机群规

模化故障诊断中的应用[J]. 热力发电, 2022, 51(12): 179-185.

DENG Wei, LI Guoqing, LIN Sheng, et al. Application of sweep frequency analysis technology in large-scale fault diagnosis of wind turbine groups[J]. Thermal Power Generation, 2022, 51(12): 179-185.

- [7] 唐新安, 王海云, 董昱廷, 等. 风电机组故障诊断方法 研究[J]. 风能, 2015(3): 56-59.
 TANG Xin'an, WANG Haiyun, DONG Yuting, et al. Research on fault diagnosis method of wind turbine[J].
 Wind Energy, 2015(3): 56-59.
- [8] 辛卫东,马志勇,滕伟,等.振动监测技术在风电机组 齿轮箱故障诊断中的应用[J].中国电力,2012,45(5): 77-80.
 XIN Weidong, MA Zhiyong, TENG Wei, et al. Application of vibration monitoring technology on fault diagnosis of gearbox in wind power unit[J]. Electric Power, 2012, 45(5): 77-80.
- [9] 孙苗,杨钧凯,吴立.改进希尔伯特-黄变换含噪振动 信号时频分析[J/OL].上海交通大学学报:1-9 [2023-07-26].https://doi.org/10.16183/j.cnki.jsjtu.2022.255. SUN Miao, YANG Junkai, WU Li. Time-frequency analysis of noisy vibration signal based on improved Hilbert-Huang transform[J]. Journal of Shanghai Jiao Tong University: 1-9 [2023-07-26]. https://doi.org/10. 16183/j.cnki.jsjtu.2022.255.
- [10] 朱俊杰, 任鑫, 郝延, 等. 风电机组故障知识的获取表达与推理框架[J]. 热力发电, 2023, 52(3): 73-80.
 ZHU Junjie, REN Xin, HAO Yan, et al. Acquisition, expression and reasoning framework of wind turbine fault knowledge[J]. Thermal Power Generation, 2023, 52(3): 73-80.
- [11] 邢月.风电机组运行状态监测与健康维护关键技术研究[D].北京:华北电力大学,2021:1.
 XING Yue. Key technologies for operational condition monitoring and health maintanance of wind turbines [D]. Beijing: North China Electric Power University, 2021:1.
- [12] 钱小毅,孙天贺,王宝石,等.基于知识规则挖掘的风 电机组故障识别与解释性分析[J].太阳能学报,2023, 44(8): 379-385.
 QIAN Xiaoyi, SUN Tianhe, WANG Baoshi, et al. Wind turbine fault identification and interpretative analysis based on knowledge rule mining[J]. Acta Solar Energy Sinica, 2023, 44(8): 379-385.
- [13] 韩万里, 茅大钧, 蔡晔, 等. 基于数据融合的风电变桨系 统故障预警研究[J]. 太阳能学报, 2022, 43(12): 236-241.
 HAN Wanli, MAO Dajun, CAI Ye, et al. Research on fault warning of wind power pitch system based on data fusion[J]. Acta Ergologica Sinica, 2022, 43(12): 236-241.
- [14] 邓子豪,李录平,刘瑞,等. 基于 SCADA 数据特征提取的风电机组偏航齿轮箱故障诊断方法研究[J]. 动力工程学报, 2021, 41(1): 43-50.
 DENG Zihao, LI Luping, LIU Rui, et al. Research on diagnosis method of wind turbine yaw gear based on SCADA data feature extraction[J]. Journal of Chinese Society of Power Engineering, 2021,41(1): 43-50.
- [15] 张萍, 张文海, 赵新贺, 等. WOA-VMD 算法在轴承故障 诊断中的应用[J]. 噪声与振动控制, 2021, 41(4): 86-93. ZHANG Ping, ZHANG Wenhai, ZHAO Xinhe, et al. Application of WOA-VMD algorithm in bearing fault diagnosis[J]. Noise and Vibration Control, 2021, 41(4): 86-93.

- [16] 纪志国. 我国风电产业现状与发展趋势探究[J]. 中国 设备工程, 2020(18): 217-218.
 JI Zhiguo. Research on current situation and development trend of China's wind power industry[J]. China Plant Engineering, 2020(18): 217-218.
- [17] 郭鹏.双馈异步风电机组不同运行模式对风电场并网特性的影响研究[J].内蒙古电力技术,2018,36(6):16-20.
 GUO Peng. Study on influence on grid-connection feature of wind farm by double fed wind turbine in different operating mode[J]. Inner Mongolia Electric Power, 2018, 36(6): 16-20.
- [18] 齐咏生,单成成,高胜利,等.基于 AEWT-KELM 的风电机组轴承故障诊断策略[J].太阳能学报,2022,43(8):281-291.
 QI Yongsheng, SHAN Chengcheng, GAO Shengli, et al. Fault diagnosis strategy of wind turbines bearing based on AEWT-KELM[J]. Acta Energiae Solaris Sinica, 2022,43(8):281-291.
- [19] LIU L, WEI Y, SONG X, et al. Fault diagnosis of wind turbine bearings based on CEEMDAN-GWO-KELM[J]. Energies, 2022, 16(1): 6-7.
- [20] FEI S W, LIU Y Z. Fault diagnosis method of bearing utilizing GLCM and MBASA-based KELM[J]. Scientific Reports, 2022, 12(1): 3-4.
- [21] 郑坤鹏, 丁云飞. 基于 WOA-LSSVM 算法的风机齿轮箱 故障诊断[J]. 上海电机学院学报, 2020, 23(6): 317-322. ZHENG Kunpeng, DING Yunfei. Fault diagnosis of wind turbines gearbox based on WOA-LSSVM[J]. Journal of Shanghai Dianji University, 2020, 23(6): 317-322.
- [22] 金江涛,许子非,李春,等. 基于变分模态分解与优化 支持向量机的滚动轴承故障诊断[J].动力工程学报, 2021,41(3):214-220.
 JIN Jiangtao, XU Zifei, LI Chun, et al. Fault diagnosis of rolling bearings based on variational mode decomposition and optimized of support vector machine[J]. Journal of Chinese Society of Power Engineering, 2021, 41(3): 214-220.
- [23] 孙萧, 黄民, 马超. 基于 CEEMD 和 WOA_LSSVM 滚动轴承声信号故障诊断[J]. 组合机床与自动化加工技术, 2021(2): 52-56.
 SUN Xiao, HUANG Min, MA Chao. Fault diagnosis of rolling bearing acoustic signal based on CEEMD and WOA_LSSVM[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2021(2): 52-56.
 [24] 胡爱军, 张军华, 刘随贤, 等. 滚动轴承多工况故障的

 (内复年, 水年午, 对随负, 守. 浓切油承多工化故障的 特征自动选择核极限学习机智能识别方法[J]. 振动与 冲击, 2020, 39(23): 182-189.
 HU Aijun, ZHANG Junhua, LIU Suixian, et al. Intelligent identification method using kernel extreme learning machine for rolling bearing multi-working condition multi-feature automatic selection[J]. Journal of Vibration and Shock, 2020, 39(23): 182-189.

[25] 侯钰哲,李舜酩,龚思琪,等. 滚动轴承故障特征选择的 Filter 与改进灰狼优化混合算法[J]. 计算机集成制造系统, 2023, 29(5): 1452-1461.
HOU Yuzhe, LI Shunming, GONG Siqi, et al. Hybrid algorithm of filter and improved grey wolf optimization for fault feature selection of rolling bearing[J]. Computer Integrated Manufacturing Systems, 2023, 29(5): 1452-1461.

(责任编辑 杜亚勤)