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Abstract—This paper proposes a hybrid ocean energy sys-
tem to form a virtual power plant (VPP) for participating in
electricity markets in order to promote the renewable ocean
energy utilization and accommodation. In the proposed system,
solar thermal energy is integrated with the closed-cycle ocean
thermal energy conversion (OTEC) to boost the temperature
differences between the surface and deep seawater for efficiency
and flexibility improvements, and the thermodynamic effects of
seawater mass flow rates on the output of solar-boosted OTEC
(SOTEC) are exploited for deploying SOTEC as a renewable
dispatchable unit. An optimal tidal-storage operation model is
also developed to make use of subsea pumped storage (SPS)
with hydrostatic pressures at ocean depths for mitigating the
intermittent tidal range energy in order to make the arbitrage
in the electricity market. Furthermore, a two-stage coordinated
scheduling strategy is presented to optimally control seawater
mass flow rates of SOTEC and hydraulic reversible pump-
turbines of SPS for enhancing the daily VPP profit. Comparative
studies have been investigated to confirm the superiority of the
developed methodology in various renewable ocean energy and
electricity market price scenarios.

Index Terms—Ocean thermal energy conversion, rolling
optimization, subsea pumped storage system, tidal power
generation, virtual power plant.

I. INTRODUCTION

A. Motivation

OCEAN energy has theoretical resource potential to meet
present and projected global electricity demand well into

the future [1]. Compared to other types of renewable energy,
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ocean energy resources have numerous advantages including
consistency, predictability, abundance and lower environmental
impacts [2]. However, renewable ocean energy sources only
account for a minuscule part of the global energy supply
despite the ocean encompassing about 71% of the earth’s
surface area with vast potential energy to exploit [3]. The
total cumulative capacity of the offshore wind power plant
(OWPP) in China only accounts for 0.7% of national tech-
nical potential for offshore wind energy utilization [4]. With
the penetration of renewable ocean energy into the electric
power grid extensively increasing, the inherent fluctuating
and volatile characteristics of renewable ocean energy have
brought challenges to the stability and security of smart
grid [5]–[7].

Due to the inherent seasonality, instability and dispersion of
renewable ocean energy resources, their harvesting and utiliza-
tion exhibit a low degree of efficiency and grid availability [1].
The low efficiency of a single ocean energy resource, such as
ocean thermal energy conversion (OTEC) [8], [9], seriously
hinders the commercialization and advancement of ocean en-
ergy. The hybridization of multiple ocean energy technologies
can make full use of their energy complementarities, and thus
provide a promising approach to improve system stability
and energy efficiency. This paper strives to investigate the
integration of various renewable ocean energy sources, such as
OWPP, tidal power plant (TPP) and OTEC, to form a hybrid
energy virtual power plant (VPP) for promoting renewable
ocean energy harvesting and accommodation [10].

B. Literature Review

So far, a large number of existing research studies in [1]–[5]
have been devoted to investigating the modeling and operation
of various ocean energy resources. The layout architectures of
offshore wind farms were designed and optimized in [11],
[12] to ensure their stable and efficient operation. The ther-
modynamic modeling and parametric optimization techniques
for different hygro-thermal cycles were investigated in [13]–
[15] to improve the energy conversion efficiency of OTEC.
The sophisticated hydrodynamic modeling of TPP was studied
in [16], [17] to optimize the operational mode in response
to time-varying tidal ranges. Despite the fact that operational
obstacles of a single ocean energy technology have been
settled, the development of renewable ocean energy sources is
still not being developed due to their low return on investment
and inherent fluctuations [1]–[3]. In recent years, various ocean
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energy resources, such as OWPP, OTEC and solar energy, have
been integrated in [18], [19] to utilize the flexibility provided
by their mutual interconnections for reliable and renewable
power supplies.

The VPP can be employed as an aggregator to incorporate
various renewable ocean energy sources and energy storage
systems (ESSs) for their flexibility enhancement, and thus
can be pooled for participating in the electricity market to
increase the VPP profitability [20], [21]. Most of the existing
literatures focused on optimizing scheduling, offering and
bidding strategies as well as the energy portfolio of the VPP in
electricity markets [22]–[28]. Stochastic programming models
were extensively formulated in [23], [24] to characterize the
uncertain renewable generation outputs and market prices by
a set of stochastic scenarios for optimizing the scheduling
of energy mix resources. Further studies were investigated
in [25], [26] to develop robust bidding models of the VPP by
formulating the confidence bounds to reduce the computational
burden and mitigate commercial risks resulting from volatile
market prices. Various ESS technologies, such as the pumped
hydro energy storage [22], battery energy storage [23], [24],
and electric vehicles [27]–[29], have been integrated into the
VPP to mitigate inherent fluctuations from renewable energy.
However, the studies on the optimal offering strategy of
the VPP to facilitate the utilization and accommodation of
renewable ocean energy resources are still not involved.

C. Contribution

In this study, a hybrid renewable ocean energy system
is formed as a VPP for participating in electricity markets
in order to promote ocean energy harvesting and accommo-
dation. A two-stage coordinated scheduling strategy is also
presented for optimally controlling seawater mass flow rates of
solar-boosted OTEC (SOTEC) and hydraulic reversible pump-
turbines of the subsea pumped storage (SPS) to enhance the
thermal efficiency of SOTEC and total daily profit under
uncertainties of renewable ocean energy and electricity market
prices. The contributions of this paper are summarized as
follows:

1) Solar thermal energy is integrated to boost the tem-
perature of surface warm seawater so as to enhance the
energy extraction from the closed Rankine cycle for efficiency
and flexibility improvements, and thermodynamic models of
the evaporator and working fluid pump are formulated to
investigate the effects of the coordination between warm and
cold seawater mass flow rates on the output of SOTEC.

2) A coordinated tidal-storage operation model is proposed
to utilize SPS with the hydrostatic pressure at ocean depth
to mitigate the intermittent tidal range energy, and the TPP
output can be complemented with SPS by pumping seawater
out of an undersea reservoir and later allowing it to flow back
in to make the arbitrage in the electricity market.

II. PROBLEM FORMULATION

A. Overview

In this paper, the VPP is composed of OWPP, TPP with
SPS and SOTEC. The OWPP and TPP outputs are fluctuating

due to the inherent intermittency and volatile characteristics
of wind and tide. On the contrary, SOTEC and SPS are both
dispatchable. The diurnal fluctuations of volatile and intermit-
tent renewable ocean energy resources can be offset by the
time complementarities between offshore wind, solar and tidal
resources. As the performances of OTEC are severely limited
by its low efficiency, solar energy is integrated into ocean
thermal energy for flexibility and efficiency enhancements.
Moreover, utilizing the hydrostatic pressure at ocean depth,
the water level in the tidal reservoir is coupled with tidal range
by SPS to mitigate the intermittent tidal energy.

These distributed renewable ocean energy installations are
corporately managed by a central control entity. With the
dispatchable SOTEC and SPS, VPP can flexibly participate in
the electricity market to boost daily profit. Moreover, the day-
ahead and balancing market are both taken into consideration
for flexible energy trading. In the day-ahead market, the VPP
submits the offering curve for the day-ahead scheduling of
electricity market transactions. In the balancing market, the
VPP can sell or purchase electricity for balancing differences
between committed values and specific realizations of renew-
able ocean energy.

B. OTEC Model With Solar Enhancement

The OTEC utilizes the thermal gradient of the ocean to
generate electricity which creates steam through the heat
source of surface warm seawater and recondenses the steam
through the deep cold seawater [10]. As shown in Fig. 1, the
working fluid with a low boiling point, such as ammonia, is
heated by warm seawater to obtain the vapor in a closed-cycle
OTEC. Then the vapor turns the turbine to drive a generator.
With the vapor condensed by the cold seawater, the working
fluid ultimately is cycled back by the working fluid pump.
Therefore, the OTEC output can be controlled by coordinating
the seawater mass flow rates so as to adjust the enthalpy of
the working fluid [5], [30]. However, on account of the small
temperature differences between surface warm seawater and
deep cold seawater, the efficiency of conventional OTEC is
only 3.5% to 4% [8].
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Fig. 1. Schematic diagram of SOTEC.

In this study, solar collectors are combined with OTEC
to boost the heat resource for the efficiency and flexibility
enhancement of OTEC. Moreover, the thermodynamic effects
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of the coordination between warm and cold seawater mass
flow rates on SOTEC output are investigated to deploy it
as the dispatchable unit. Fig. 2 shows the T -s diagram of
OTEC [9]. Here, TCSI and TCSO are temperatures of the inlet
and outlet cold seawater, TWSI and TWSO are temperatures
of the inlet and outlet warm seawater, TC and TE are the
condensing temperature and evaporating temperature, TSCO is
the outlet temperature of the warm seawater flowing through
solar collectors.
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Fig. 2. T -s diagram of closed OTEC.

The output power of SOTEC Pe is calculated as follows,

Pe = mWFηturηgen(h1 − h2) (1)

where mWF is the mass flow rate of the working fluid. h1
and h2 are specific enthalpies of the working fluid at the
turbine inlet and outlet. ηtur is the efficiency of the turbine
and ηgen is the efficiency of the generator. The values of all
enthalpies are calculated by the software REFPROP 9.0 [31].
The consumptions of the cold seawater pump PCS, warm
seawater pump PWS, working fluid pump PWF and adjusting
pump PAD are calculated as follows,

PCS = mCS∆HCSg/ηCSP (2)
PWS = mWS∆HWSg/ηWSP (3)
PAD = mAD∆HADg/ηADP (4)
PWF = mWF∆HWFg/ηWFP = mWF(h4 − h3) (5)

where mCS and mWS are mass flow rates of cold seawater
and warm seawater; h3 and h4 are specific enthalpies of the
working fluid at the working fluid pump inlet and outlet. ηCSP,
ηWSP, ηADP and ηWFP are efficiencies of the cold seawater
pump, warm seawater pump, adjusting pump and working fluid
pump, respectively. ∆HCS, ∆HWS, ∆HAD, and ∆HWF are
all the frictional head losses and they are calculated [14] as
follows,

∆H = fv2L/2Dg (6)

v = 4m/πD2ρ (7)

where f is the friction factor of the pipe or fitting; D is the
diameter of the pipe; L is the pipe length; V , ρ and m are
the velocity, density and mass flow rate of the seawater or
working fluid, respectively.

Based on the conservation of energy in the heat-exchanging
model of the evaporator and condenser, the energy balance can
be written [32], [33] as follows,

QE = mWF(h1 − h4) = mADCP(TSCO − TWSO)ηE (8)
QC = mWF(h2 − h3) = mCSCP(TCSO − TCSI)ηC (9)

where QE and QC are heat flow rates of the condenser
and evaporator, respectively; Cp is the heat capacity of the
seawater; ηE and ηC are efficiencies of the evaporator and
condenser, respectively. The heat transfer coefficient K is
calculated as follows [34],

K =

(
1

αS
+RS +

1

αWF
+RWF +

δP
λP

)
(10)

where αS and αWF are the surface heat transfer coefficients
on the seawater and working fluid sides, RS and RWF are the
fouling resistances on the seawater and working fluid sides,
δP and λP are the heat transfer plate thickness and thermal
conductivity. The heat transfer areas of the evaporator AE and
condenser AC can be calculated as follows,

AE =
QE

KE∆TE
(11)

AC =
QC

KC∆TC
(12)

where ∆TE and ∆TC are the logarithmic mean temperature
differences in evaporation and condensation sections. The
logarithmic mean temperature difference can be calculated by
the following formula,

∆T =
(TS,in − TWF,in)− (TS, out − TWF,out)

ln
(

TS,in−TWF,in
TS, out−TWF,out

) (13)

where TS,in is the temperature of the seawater flowing in
the evaporator or condenser; TS,out is the temperature of the
seawater flowing out of the evaporator or condenser; TWF,in is
the temperature of the working fluid flowing in the evaporator
or condenser; TWF,out is the temperature of the working fluid
flowing out of the evaporator or condenser. Based on (1), (8)
and (9), the thermodynamic connection between seawater mass
flow rates and SOTEC output can be expressed as follows,

Pe =
mAD(h1 − h2)(TSCO − TWSO)ηturηgenCp

h1 − h4
(14)

Pe =
mCS(h1 − h2)(TCSO − TCSI)ηturηgenCp

h2 − h3
(15)

Therefore, SOTEC output can be controlled by the coordi-
nation between warm and cold seawater mass flow rates.

The net power PN of SOTEC and the consumptions of
pumps can be calculated as follows,

PN = Pe − (PWS + PCS + PAD + PWF) (16)

PCS =
8P 3

e (h2 − h3)3LCSf

(h1 − h2)3η3turη
3
gen(TCSO − TCSI)

3

D5
CSρ

2π2ηCSPη
3
CC

3
p

(17)

PAD =
8P 3

e (h1 − h4)3LADf

(h1 − h2)3η3turη
3
gen(TSCO − TCSI)

3

D5
ADρ

2π2ηADPη
3
EC

3
p

(18)
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PWS = 8m3
WSLWSf/D

5
WSρ

2π2ηWSP (19)
PWF = Pe(h4 − h3)/ηturηgen(h1 − h2) (20)

The flat plate solar collectors are utilized to promote the
flexibility and efficiency of SOTEC. The thermal energy Qu

provided by the working fluid can be calculated as follows,

Qu = mWSCp(TSCO − TWSI) (21)

The Hottel–Whillier equation [35] for thermal energy The
Hottel–Whillier equation [35] for thermal energy Qu of a solar
thermal collector system is,

Qu = AscFR[S − UL(TWSI − Ta)] (22)

where Asc is the area of the flat solar collectors; S is the
radiation absorbed flux by unit area of the absorber plate; UL

is the overall loss coefficient; Ta is the ambient temperature;
FR is the heat removal factor and is defined as follows,

FR =
mWSCp

AscUL

[
1− exp

(
−AscULF

′

mWSCp

)]
(23)

where F ′ is the collector efficiency factor.

C. Tidal-stpply Electricity Reliably and Sorage Operation
Model With SPS

Despite the fluctuation of tidal energy, it is highly pre-
dictable because of its obvious daily, weekly and annual
cycles. Nevertheless, tidal power generation is close to zero
for about 4 hours during every tide. Therefore, there is profit
potential to couple tidal generation with ESS. The intermittent
output can be optimized by the utilization of ESS which stores
excess tidal power when demand is low and releases energy
at times of high demand to make the arbitrage.

The TPP consists of a dam built across a bay, with chan-
nels built over the dam containing several lines of in-stream
turbines as shown in Fig. 3. In this way, with the barrage
built across the bay, tides are blocked in the coastal basin.
When turbine gates are opened, the seawater is forced to
flow through narrow channels for intensifying tidal currents.
The TPP optimizes the amount of harvestable energy under
the model of ebb generation. When the flood tide occurs,
the seawater flows into the basin through the sluices. During
the ebb tide, the seawater level outside the basin drastically
decreases. With the turbine gates opened, seawater flows out of
the tidal reservoir driving the turbines to generate electricity.
Therefore, flood tide is related to basin filling and ebb tide
corresponds to basin emptying.

In this paper, the TPP is integrated with SPS to surmount the
intermittent and improve the flexibility of the TPP. The SPS
comprises a thin-shelled concrete ellipsoid with a chamber
that is anchored to the sea floor and performs as a reservoir,
valves, hydraulic reversible pump-turbines, and generators [36]
as shown in Fig. 4. The subsea reservoir is located at 30 m
deep under the sea and the average hydraulic pressure is
302.82 kPa [37]. With the hydrostatic pressure at ocean depth,
SPS can store or release energy. The pumped hydro units pump
the seawater out of the reservoir through valves to store the
excessive energy, and the valves in the evacuated reservoir
are opened when the SPS releases energy to let the seawater
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Fig. 3. Sketched vertical view of TPP.
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Fig. 4. Internal view of subsea pumped storage during (a) charging and (b)
discharging.

flow in the tidal reservoir turning the turbine and generating
electricity. Therefore, the TPP coupled with SPS could offer a
synergistic method to supply electricity reliably and steadily,

Stt = Stt−1 + Ppu,tEfpu − Ptu,t/Efgen (24)

where Stt and Stt−1 are the energy state of SPS at hour
t and t − 1, respectively; Ppu,t and Ptu,t are the power of
the pump and turbine in the SPS at hour t, respectively;
Efpu and Efgen are the efficiencies of the pump and turbine,
respectively. Maximum energy state of SPS occurs when the
subsea reservoir is empty and the inside volume remains at or
below atmospheric pressure. Therefore, the total capacity of
SPS is related to the located ocean depth and the inner volume
of the subsea reservoir. The discharge process ends when the
subsea reservoir is full of seawater.

The TPP operates under the mode of ebb generation in
which the turbine only works when the ebb tide is in the same
flow direction [17]. When the ebb tide happens, the operations
of TPP are divided into four steps including filling, holding,
generating and holding as shown in Fig. 5:

1) The basin upstream of the barrage is filled with seawater
flowing through the sluices when the high tide occurs. Then
the sluice gates would be closed until the tidal reservoir level
is equal to the sea level (filling section from A to B).

2) The sluice and turbine gates are both kept closed until
the sea level decreases to form an adequate water head. Here
Hst is named as the starting water head (holding section from
B to C).

3) The turbine gates are opened so that the seawater flows
out of the tidal reservoir driving turbines to generate electricity
until the water head is not high enough to drive turbines. Here
the low water head is defined as the minimum water head Hmin

(generating section from C to D).
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4) Because of the low water head, the turbine and sluice
gates would be closed again until the sea level is higher than
the reservoir level (holding section from D to E).

When the TPP is integrated with SPS, the seawater level
of the tidal reservoir changes as shown in Fig. 5. Assuming
that there is a redundant energy need to be stored at time T1,
obviously the water head of the tidal reservoir with SPS is
higher due to the pumped seawater from the subsea reservoir,
which contributes to the greater output power. Moreover, the
operator of the TPP can also make the arbitrage by storing
excessive or off-peak energy and selling electricity at the peak
market price. The specific quantity of the stored or released
energy is related to the power price differential and strategic
market decisions.

III. MODELING AND METHODOLOGY

A. Day-ahead Offering Strategy

The offering strategy of the VPP takes into account both
the day-ahead market and balancing market, which provides
the operator of the VPP with flexible energy trading. In the
day-ahead market, the VPP is regarded as a price taker and
submits offers to the day-ahead market several hours before the
operation hour. With inherent uncertainties of offshore wind,
tidal and solar power, the operator has to sell or purchase elec-
tricity in the balancing market for settling differences between
committed values and specific realizations of renewable ocean
energy. Based on the European power market, transactions in
the balancing market adopt the dual pricing strategy [22], [23].

In this paper, a two-stage coordinated scheduling strategy
combined with rolling horizon optimization is utilized for
optimally controlling the seawater mass flow rates of SOTEC
and hydraulic reversible pump-turbines of SPS to promote
the thermal efficiency of SOTEC and total daily profit [38],
[39]. In the first stage, the offering curve should be provided
by the operator in the day-ahead market. It is worth noting
that there is no scheduling plan made until the output of
renewable ocean energy becomes known. As the proposed
VPP is a 100% renewable ocean energy system without fossil
fuel cost, the developed profit-maximization scheduling model
is devoted to obtaining the optimal offering curve in the day-
ahead market and trading strategy in the balancing market,

and controlling various dispatchable devices for the optimal
coordination among adoptive renewable ocean energy. The
goal of the optimal scheduling model is to maximize the
expected profit of the VPP which contains the amount of
electricity purchased or sold in the day-ahead market Gs,t,
electricity sold at a low price in the balancing market gds,t,
electricity bought at a high price in the balancing market gups,t,
star-up cost of SOTEC Fo, and star-up cost of the charging
units Ftur and discharging units Fpu in SPS, as follows,

max

NH∑
t=1

NR∑
s=1

πs
[
λs,t(Gs,t + gds,t · ϕd − gups,tϕup)

−ys,tFo − zs,tFtu − ls,tFpu] (25)

where πs is the probability of the sth scenario; λs,t is the
day-ahead market price in the scenario s and time t; NH is
the number of time periods; NR is the number of scenarios for
the day-ahead scheduling. ϕd and ϕup are the down-regulation
and up-regulation price ratios, respectively; ys,t is the binary
variable that is equal to 1 if SOTEC starts up at time t,
and 0 otherwise; zs,t and ls,t are binary variables whose
values are 1 if the turbine and pump of SPS start up at time
t, respectively, and 0 otherwise. The system constraints are
depicted as follows and the following constraints hold for any
s in scenarios NR.
1) SOTEC Constraints

The equality constraints of the pump consumptions are
based on the thermodynamic model in Section 2. Moreover,
the SOTEC has to enforce the minimum-down and minimum-
up time constraints due to the physical properties and opera-
tional requirements of the units,

xs,t, ys,t ∈ {0, 1} ∀t (26)

xs,t − xs,t−1 ≤ ys,t ∀t (27)

Pe,minxs,t ≤ Pe,s,t ≤ Pe,maxxs,t ∀t (28)

mCS,s,t =
Pe,s,t(h2,s − h3,s)

(h1,s − h2,s)ηgenηtuCP(TCSO − TCSI)
∀t (29)

mAD,s,t =
Pe,s,t(h1,s − h4,s)

(h1,s − h2,s)ηgenηtuCP(TSCO,s − TWSO)
∀t

(30)
mWF,s,t = Pe,s,t/(h1,s − h2,s)ηgenηtu ∀t (31)

PWS,s,t = 8(mWS,s,t)
3fLWS/D

5
WSρ

2ηWSP ∀t (32)

PCS,s,t = 8(mCS,s,t)
3fLCS/D

5
CSρ

2ηCSP ∀t (33)

PAD,s,t = 8(mAD,s,t)
3fLAD/D

5
ADρ

2ηADP ∀t (34)

PWF,s,t = mWF,s,t(h4,s − h3,s) ∀t (35)

PC,s,t = PWS,s,t + PCS,s,t + PAD,s,t + PWF,s,t ∀t (36)

− rd ≤ Pe,s,t − Pe,s,t−1 ≤ ru ∀t (37)
Lmin

down∑
t=1

xs,t = 0 (38)

t+Tmin
down−1∑
t′=t

(1− xs,t′) ≥ Tmin
down(xs,t−1 − xs,t)

∀t ∈ [Lmin
down + 1, NH − Tmin

down + 1] (39)
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NH∑
t′=t

[1− xs,t′ − (xs,t−1 − xs,t)] ≥ 0

∀t ∈ [NH − Tmin
down + 2, NH] (40)

Lmin
up∑
t=1

(1− xs,t) = 0 (41)

t+Tmin
up −1∑
t′=t

xs,t′ ≥ Tmin
up ys,t

∀t ∈ [Lmin
up + 1, NH − Tmin

up + 1] (42)
NH∑
t′=t

(xs,t − ys,t) ≥ 0 ∀t ∈ [NH − Tmin
up + 2, NH] (43)

where xs,t is the binary variable that is equal to 1 if SOTEC is
on at time t, and 0 otherwise. Constraints (26)–(27) represent
the correlations between binary xs,t and ys,t. Constraints (29)–
(36) are the thermodynamic model of SOTEC. PC, s, t is the
total energy consumption of four pumps in SOTEC. The ramp
rate limits are presented in constraints (37) where rd and ru
are the ramp-down limit and ramp-up limit of the generator
unit in SOTEC. Tmin

down and Tmin
up are minimum-down time and

maximum-up time of the generator unit in SOTEC. Lmin
down and

Lmin
up are the length of time that SOTEC has to be down and

to be up from the beginning of the planning horizon.

2) SPS Constraints

The capacity of SPS should be constrained due to the limited
volume of the undersea reservoir. The fact that energy storing
and releasing cannot be done simultaneously also has to be
highlighted. Moreover, the maximum power of the turbine and
pump are depicted as follows,

Sts,1 = Ststart + Ppu,s,1Efpu − Ptu,s,1/Eftu (44)

Sts,t = Sts,t−1 + Ppu,s,t · Efpu − Ptu,s,t/Eftu ∀t ∈ [2, NH]
(45)

0 ≤ Sts,t ≤ Stmax ∀t (46)

0 ≤ Ptu,s,t ≤ Ptu,maxus,t ∀t (47)

0 ≤ Ppu,s,t ≤ Ppu,maxvs,t ∀t (48)

us,t, vs,t ∈ {0, 1} ∀t (49)

us,t + vs,t ≤ 1 ∀t (50)

as,t =

{
us,1

us,t − us,t−1 ∀t ∈ [2, NH]
(51)

bs,t =

{
vs,1

vs,t − vs,t−1 ∀t ∈ [2, NH]
(52)

zs,t =

{
0 (as,t = −1, 0)

1 (as,t = 1)
∀t (53)

ls,t =

{
0 (bs,t = −1, 0)

1 (bs,t = 1)
∀t (54)

where us,t and vs,t are binary variables that are equal to 1 if
the turbine and pump of SPS are on at the beginning of the
time period, respectively, and 0 otherwise; as,t and bs,t are

variables that are equal to 1 if the turbine and pump of SPS
start up at the time t, respectively, equal to −1 if shut down,
and 0 otherwise.
3) Multi-Energy Balance and Other Constraints

Pe,s,t − PC,s,t + PWP,s,t + PTP,s,t + gups,t + Ptu,s,t

= Gs,t + gds,t + Ppu,s,t ∀t (55)

G1,t = G2,t = G3,t · · · = GNR,t ∀t (56)

Constraint (55) corresponds to the energy balancing con-
straint. Constraint (56) suggests that the electricity sold or
purchased at time t in the day-ahead market is only relevant to
the given market price irrespective of OWPP and TPP outputs,
which also models the fact that there is only one offering curve
submitted to the day-ahead market.

B. Real-time Optimization of the VPP Dispatch

In the real-time stage, the operator should make real-time
scheduling decisions of SOTEC and SPS per hour after the
realization of the OWPP output, solar radiation and TPP
output, and then determine the strategy in the balancing market
to regulate energy deviations. Therefore, the rolling horizon
optimization is utilized for real-time dispatching in the second
stage. During the optimization routine, every scheduling strat-
egy is obtained by optimizing for the present dispatch cycle
and taking into account the remaining dispatch cycles while
looking ahead to the uncertainties of OWPP outputs, solar
radiations and TTP outputs in future horizons. The objective
function of the scenario-based rolling horizon optimization
model in the second stage aims to minimize the real-time
scheduling cost, including the cost of purchasing or selling
electricity in the balancing market and star-up cost of SOTEC
and SPS, plus the scheduling cost of all remaining future
scenarios,

min λt0
(
gupt0 ϕup − gdt0ϕd

)
+ yt0Fo + zt0Ftu + lt0Fpu

+

NR∑
s=1

πs

NH∑
t=t0+1

[
λs,t

(
gups,tϕup − gds,tϕd

)
+ ys,tFo

+zs,tFtu + ls,tFpu] (57)

where λt0 and λt are the day-ahead market prices at present
time t0 and time t, respectively; gupt0 and gups,t are the amount
of electricity purchased at present time t0 and time t under
scenario s in the balancing market, respectively; gdt0 and gds,t
are the amount of electricity sold at present time t0 and time
t under scenario s in the balancing market, respectively; yt0
and ys,t are binary variables that are equal to 1 if SOTEC
starts up at time t0 and time t in scenario s, respectively, and
0 otherwise; zs,t and ls,t are binary variables that are equal to
1 if the turbine and pump of SPS start up at the beginning of
the current time t0 and time t in scenario s, respectively, and
equal to 0 otherwise.

The system constraints (26)–(54) can be applied to the real-
time scheduling model as well. It’s worth noting that the day-
ahead market price λs,t and electricity purchased or sold in
the day-ahead market Gs,t shall be constant in the real-time
dispatch. Furthermore, the energy balance constraint at current
time t0 and time t in scenario s is expressed as follows,
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Pe,t0 − PC,t0 + PWP,t0 + PTP,t0 + gupt0 + Ptu,t0 (58)

= Gt0 + gdt0 + Ppu,t0 (59)
Pe,s,t − PC,s,t + PWP,s,t + PTP,s,t + gups,t + Ptu,s,t

= Gs,t + gds,t + Ppu,s,t ∀t ∈ [t0 + 1, NH],∀s (60)

The flowchart of the developed optimal two-stage VPP
scheduling model is depicted in Fig. 6. It’s worth noting that
the possible scenarios of renewable ocean energy outputs and
electricity market prices from the time period t0 + 1 to NH

should be updated by the timely forecasting scenarios in every
scheduling cycle and the operator of the VPP only operates
according to the obtained scheduling strategy in the present
time t0.

Start

Input parameters of OWPP,TPP,SPS and SOTEC

Generate multiple stochastic scenarios on day-ahead market
prices,solar radiations,OWPP and TPP outputs over the 24-hour

horizon based on historical data

Formulate the day-ahead VPP scheduling model with (25)-(56),
and obtain the optimal offering curve for electricity trading

Implement the scheduling decision on SOTEC,actions of SPS
and balancing electricity transactions for the current time t0

End

Yes

No
t0=t0+1t0=NH?

Calculate the daily VPP profit from day-ahead and real-time
scheduling results

Optimize the real-time VPP dispatch strategy (26)-(59) on a
rolling horizon basis ,and determine the optimal scheduling

decisions for all the scenarios

Predict solar radiations,OWPP and TPP output scenarios,and
update the set of possible seenarios in the orlling horizons

Obtain real-time monitoring data on the balancing market price,
solar radiation,OWPP and TPP outputs

Set the initial time
period t0=1

Fig. 6. Flowchart of the two-stage VPP dispatch model.

IV. CASE STUDIES

A. System Description

The two-stage scheduling strategy is presented over one day
with 24-time slots. The characteristics of SOTEC and TPP
with SPS are shown in Tables I and II, respectively. A 10-
block piecewise linear function is utilized to approximate the
cubic function of the SOTEC pumps’ energy consumption.
It is assumed that SOTEC has been shut down for one hour
before the considered time horizon.

TABLE I
CHARACTERISTICS OF SOTEC

Parameters Symbol Value

Warm seawater pipe Length (m) LWS 50
Diameter (m) DWS 8.9

Cold seawater pipe Length (m) LCS 1000
Diameter (m) DCS 7.9

Warm seawater temperature at depth 0 m (◦C) TWSI 25.2
Cold seawater temperature at depth 1000 m (◦C) TCSI 4.7
Friction factor of pipe f 0.25
Turbine efficiency ηtur 0.8
Generator efficiency ηgen 0.9

Seawater pump efficiency
ηWSP
ηCSP
ηADP

0.8

Working fluid pump efficiency ηWFP 0.75
Solar collector area (m2) Asc 6278
Heat transfer plate thickness (m) δP 0.001
Heat transfer thermal conductivity (W/(m·K)) λP 160
Fouling resistances on the working fluid side
(m2·K/W)

RWF 0.000007

Fouling resistances on the seawater side (m2·K/W) RS 0.000017
Overall heat transfer coefficient of the evaporator
(kW/m2 K)

KE 3.98

Overall heat transfer coefficient of the condenser
(kW/m2 K)

KC 3.24

Heat transfer area of the evaporator (m2) AE 6615
Heat transfer area of the condenser (m2) AC 9346
Efficiency of the evaporator ηE 0.7
Efficiency of the condenser ηC 0.85

The VPP is aggregated by an OWPP with a capacity of
10 MW, a TPP with a capacity of 15 MW and a SOTEC
plant with a capacity of 10 MW. The data of the wind
speed and solar radiation are obtained from the software
Meteonorm 7.3 and the height of the sea level is based on
historical data [40]. The day-ahead market price data are
extracted from APX Power UK [41]. In the day-ahead stage,
the two-stage coordinated scheduling model characterizes the
uncertainties of the electricity market prices, solar radiations,
OWPP and TPP outputs by the initial stochastic scenarios
of 10,000, and then the scenario reduction technique [42] is
utilized to decrease the number of scenarios to 625 so as
to lower the scale and computation time of the stochastic
optimization while retaining a good approximation of system
uncertainties. The five day-ahead market price scenarios of the
reduced scenarios set are shown in Fig. 7. The overall two-
stage scheduling strategy in (25)–(59) is a mixed-integer linear
programming problem that can be solved utilizing CPLEX
12.8 on a personal computer with 2.8-GHz Intel Core i5 CPU
and 16 GB RAM.

B. Comparative Results and Analysis

For further research, the following three comparative
schemes are performed to verify the superiority of the devel-
oped system: 1) Scheme 1 implements the proposed two-stage
coordinated scheduling model in Section III; 2) Scheme 2
adopts the conventional OTEC without the solar enhancement;
3) Scheme 3 implements the traditional TPP without SPS.

In the day-ahead stage, Fig. 8 illustrates the day-ahead
hourly profit and cumulative profit in schemes 1–3. It’s ob-
vious that the hourly profit curve in the three schemes is basi-
cally consistent with the fluctuation in the market price curves.
In hour 18, the peak profit happens which results from the peak
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TABLE II
CHARACTERISTICS OF TPP WITH SPS

Parameters Symbol Value
Capacity of TPP (MW) PTP,max 15
Charge capacity of SPS (MW·h) Stmax 20
Located ocean depth of SPS (m) Hs 30
Average hydraulic pressure of SPS (kPa) Ps 302.82
Maximum power of the hydraulic
reversible pump-turbines (MW)

Ptu,max

Ppu,max
5

Hydraulic reversible pump-turbine efficiency Eftur
Efpu

0.85

Inner volume of the subsea reservoir (m3) Vs 13592
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Fig. 8. Expected hourly and cumulative profit of VPP in schemes 1–3.

market price in the market price scenarios. It also can be found
that the hourly profit in scheme 1 is always higher compared
with scheme 2 due to the higher efficiency of SOTEC. The
total daily profit under scheme 1 is Euro 18,072.60, which is
17.07% higher than Euro 1,5437.15 in scheme 2. Moreover,
owing to the flexibility of SPS, the overall expected profit in
scheme 1 is 3.54% higher than Euro 17,454.26 in scheme 3.
Therefore, the comparative results demonstrate that VPP can
achieve the arbitrage by the integration of TPP with SPS.
Considering that if it implements the expected-value strategy,
the profit is Euro 16,592.54. Therefore, the value of the
stochastic solution (VSS) is Euro 1,480.06, which is 8.92%
in relative terms.

As shown in Fig. 9, the efficiency of SOTEC in scheme 1
increases related to solar radiation. When the solar radiation
is highest in hour 13, the efficiency of SOTEC in scheme 1 is
more than twice as large as that in scheme 2. Fig. 10 shows
the amount of electricity sold in the day-ahead transactions
considering various renewable ocean energy and market price
scenarios. It’s obvious that the VPP sells more electricity to
the day-ahead market during hours 6–20 in scheme 1 than that
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Fig. 9. Energy efficiency of OTEC in schemes 1 and 2.
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Fig. 10. Day-ahead offering strategy of VPP in schemes 1–3.

in scheme 2 due to the higher efficiency of SOTEC. When
the electricity market price is low, VPP in schemes 1 and
2 tends to store the generated electricity rather than sell all
generated electricity in scheme 3 during hours 2–7. Therefore,
the amount of day-ahead trading electricity in scheme 3 is
higher than that in schemes 1 and 2 during hours 2–7. On
the contrary, SPS in schemes 1 and 2 tends to release energy
when the electricity market price is high, which contributes to
the higher amount of day-ahead trading electricity in schemes
1 and 2 than that in scheme 3 during hours 18–21. Because
of the flexibility of SPS, the VPP tends to purchase electricity
through the balancing market at a lower market price and sell
electricity at a higher market price, which results in a higher
total amount of electricity in scheme 1 than that in scheme 3.

As shown in Figs. 11–12, for the sake of clarity, assuming
that the value in Fig. 11 is negative when SPS stores energy
and the value in Fig. 12 is negative when the electricity is sold
in the balancing market. Moreover, OWPP, TPP, and SOTEC
outputs remain positive.

In the real-time stage, the amount of charging/discharging
energy in SPS under schemes 1 and 2 is presented in Fig. 11.
It can be found that the VPP tends to utilize the pumps of
SPS to store the energy generated by the VPP or purchased
from the market during hours 3–8, which results from the
low day-ahead market price. On the contrary, the seawater is
not pumped out of the subsea reservoir anymore since the
electricity market price begins to rise in hour 16. Fig. 12
depicts the amount of electricity sold or purchased under
schemes 1–3 in the balancing market. Table III gives the
quantitatively comparative scheduling results for schemes 1–3.
It can be found that the VPP tends to purchase electricity in
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TABLE III
STATISTICAL SCHEDULING RESULTS IN SCHEMES 1–3

Scheme 1 2 3
Day-ahead profit (C) 18808.82 16356.62 18237.67
Balancing electricity sold (MW·h) 8.03 10.24 10.74
Balancing electricity purchased (MW·h) 40.71 38.66 36.58
Balancing market cost (C) 2066.41 1924.54 2678.82
Start-up cost (C) 234.32 234.32 78.56
Real-time operation cost (C) 2300.73 2158.86 2757.38
Final profit (C) 16508.09 14197.76 15480.29

schemes 1 and 2 as a consequence of the low electricity market
price during hours 4–9. In addition, the VPP also purchases
electricity at a higher electricity market price during hours
17–18, which results from the limited output of SPS and
fluctuations of renewable ocean energy. Moreover, due to the
lack of SPS and fluctuations of renewable ocean energy in
hours 18–21, the VPP in scheme 3 has to buy more electricity
in the balancing market compared to schemes 1 and 2 when the
market price is high. Therefore, the balancing transaction cost
in scheme 3 is 29.64% higher than that in scheme 1 despite
the amount of electricity purchased in scheme 3 is lower than
that in scheme 1.

C. Discussion

The initial scenario tree is generated on the basis of forecast-
ing results from historical data. For the purpose of capturing
the forecasting uncertainties, Monte Carlo simulations are
utilized for generating scenarios by sampling from Gaussian
probability distributions of renewable ocean energy output

and day-ahead market price forecasting errors. Moreover, the
scenario reduction technique is implemented for removing
similar scenarios while reserving the characteristics of the ini-
tial scenarios. The comparative studies on stochastic scenarios
of various scales have been further implemented to research
the scale of the initial scenarios and reduced scenarios in the
day-ahead scheduling model. The daily profit of the VPP and
simulation time with different numbers of initial scenarios
and reduced scenarios in the day-ahead stage are shown in
Tables IV and V, respectively. The results indicate that the
daily profit of the VPP would be promoted with the increased
number of original scenarios and reduced scenarios. However,
the computing time would rapidly increase. Comparing the
results of the reduced scenarios on the same scale, it can
be found that the simulations in more than 10,000 original
scenarios have approximate profits. Similarly, with the 10,000
original scenarios, the simulations in more than 625 reduced
scenarios have approximate profits while the computing time
increases rapidly. Therefore, the two-stage coordinated day-
ahead scheduling stage characterizes the uncertainties in the
electricity market prices, solar radiations, OWPP and TPP
outputs using the initial stochastic scenarios of 10,000 based
on historical data, and then the scenario reduction technique
is utilized to decrease the number of scenarios into 625 so
as to lower the scale and computation time of the stochastic
optimization while retaining a good approximation of system
uncertainties.

TABLE IV
DAILY PROFITS IN DIFFERENT NUMBERS OF DAY-AHEAD SCENARIOS (C)

#of initial
scenarios

#of reduced scenarios
100 400 625 800 1000

500 17095.19 17496.37 17731.14 17804.19 17794.92
2500 17288.63 17673.53 17928.25 17988.53 17996.17
5000 17372.34 17749.59 18009.81 18075.17 18087.42
10000 17431.54 17803.61 18072.60 18130.73 18149.36
15000 17462.78 17836.48 18109.87 18159.82 18181.17
20000 17477.13 17852.42 18126.19 18173.94 18200.75
25000 17485.93 17859.34 18137.69 18180.67 18205.74

TABLE V
SIMULATION TIME IN DIFFERENT NUMBERS OF DAY-AHEAD

SCENARIOS (MIN)

#of initial scenarios #of reduced scenarios
100 400 625 800 1000

500 3.72 6.35 8.26 9.43 12.79
2500 4.94 7.28 9.54 11.75 15.41
5000 6.15 9.64 11.13 13.92 18.35
10000 9.23 12.41 14.61 17.45 23.87
15000 15.34 18.26 20.72 22.16 28.12
20000 23.82 25.79 27.41 31.26 37.49
25000 34.15 36.32 37.83 42.47 49.37

In order to investigate the scalability and real-time applica-
bility of the two-stage coordinated scheduling model, the daily
profit of the VPP and simulation time with different numbers
of initial scenarios and reduced scenarios in the real-time stage
are shown in Tables VI and VII, respectively. It can be found
from Table VI that, comparing the results of the reduced
scenarios in the same scale, the simulations in more than
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TABLE VI
DAILY PROFITS IN DIFFERENT NUMBERS OF REAL-TIME SCENARIOS (C)

#of initial
scenarios

#of reduced scenarios
5 10 20 30 50

500 15965.24 16158.72 16266.48 16311.27 16338.52
1000 16103.93 16301.13 16405.16 16446.41 16469.81
2000 16240.72 16419.68 16515.49 16547.15 16563.61
4000 16326.47 16508.09 16607.85 16644.29 16663.75
6000 16364.85 16551.18 16643.12 16674.19 16689.24
8000 16388.96 16580.87 16671.26 16703.84 16716.98
10000 16409.14 16592.39 16680.77 16719.52 16732.37

TABLE VII
SIMULATION TIME IN DIFFERENT NUMBERS OF REAL-TIME

SCENARIOS (S)

#of initial
scenarios

#of reduced scenarios
5 10 20 30 50

500 28.96 46.89 89.25 199.43 267.41
1000 31.14 50.06 93.54 204.84 273.89
2000 33.52 53.16 97.42 207.41 276.15
4000 37.69 58.74 99.93 212.36 281.26
6000 39.41 60.94 103.28 215.76 286.51
8000 46.59 62.94 107.84 220.13 294.41
10000 52.16 65.41 110.63 224.36 308.18

4,000 original scenarios have approximate profits. Moreover,
with the number of reduced scenarios of more than 10, the
simulation time is more than one minute, which is not suitable
for real-time VPP dispatching. Therefore, taking both the
daily VPP profit and real-time applicability into consideration,
4,000 initial scenarios and 10 reduced scenarios is a trade-off
decision to satisfy the requirement on the response speed of
the real-time electricity market at the minute level [43]. The
computing time of the rolling optimization in the second stage
of scheduling is 58.74 seconds.

V. CONCLUSION

This paper proposes an optimal scheduling model for coor-
dinating various renewable ocean energy to flexibly participate
in the electricity market. The findings of this paper are
concluded as follows: 1) The combination of solar energy and
the closed-cycle OTEC was found to effectively promote the
efficiency of OTEC, which contributes to a 17.07% higher
expected profit in the market transaction; 2) The activities
of SPS are basically consistent with the fluctuation of the
day-ahead market price curve. Therefore, with the coordinated
tidal-storage operation model, the VPP can make the arbitrage
to obtain a 3.54% higher profit; 3) Comparative studies and the
VSS, which is 8.92% of the profit under the expected-value
strategy, demonstrate the superior performance of the proposed
methodology to maximize the short-term expected profit under
uncertainties of renewable ocean energy and electricity market
prices.
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