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Abstract—A time-delay-dependent wide-area damping con-
troller synthesis approach, based on Jensen’s integral inequality
and evolution algorithm, is developed to suppress the adverse
effect of time delay on the supplemental control of high-voltage
direct current (DC) transmission systems. Initially, the state-space
model of hybrid AC/DC systems with time delay is derived and
the delay-dependent criteria for the stability of the closed-loop
system are provided based on Jensen’s integral inequality. Subse-
quently, initial solutions are randomly generated to overcome the
difficulty of solving the nonlinear matrix inequality. Finally, the
time-delay stability upper bound of the controller is optimized
using the differential evolution algorithm. In comparison to
popular time-delay stable controller design methods, such as
the free-weighting-matrix approach, the proposed method based
on output feedback realization requires fewer decision variables
and is more suitable for large-scale hybrid AC/DC systems.
Three examples are introduced to verify the effectiveness of the
proposed method.

Index Terms—Damping suppression, delay-dependent control,
differential evolution algorithm, Jensen’s inequality, output
feedback, time-varying delay, wide-area control.

I. INTRODUCTION

LOW-FREQUENCY oscillations pose a serious threat to
the security and stability of large-scale interconnected

power systems. The use of supplemental control functions
of high-voltage direct current (HVDC) or wide-area power
system stabilizers allows the control of the cross-area oscilla-
tion patterns and is one of the most widely studied measures.
However, in practical applications, wide-area control systems,
such as multi-DC coordinated control systems, must collect
multiple signals which are thousands of kilometers apart. Thus,
the impact of signal transmission delays on the control effect
cannot be ignored.
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Wide-area measurement and control signals in power sys-
tems can be transmitted in several ways, e.g., through optical
fibers, carrier waves, and satellites. According to [1], [2],
optical fiber transmission has the shortest time delay, generally
in the range of 60 to 100 ms, while the time delay of satellite
transmission can be up to 560 ms [3].

Based on current research [4]–[7], considering the time
consumption of signal collection, calculation, and transmis-
sion, the maximum signal delays of measurement-type and
protection-type PMUs are found to be more than 600 ms
and 40 ms, respectively. Therefore, the design of wide-area
controllers without considering the time delay may lead to
system instability [5]–[7]. Thus, the fixed delay compensa-
tion algorithm is generally implemented in wide-area control
projects; however, it is observed that the expected effect is
not achieved with actual applications. Regarding controller
performance degradation, owing to inaccurate delay compen-
sation, parts of the wide-area control systems are only em-
ployed as low-frequency oscillation monitoring and warning
systems, without being used for closed-loop operations [8],
thereby losing their utility. To improve the performance of
wide-area control systems, methods for time-delay stability
analysis, time-delay limit estimation, and time-delay system
stabilization are required.

Current methods are divided into frequency- and time-
domain methods. The theoretical basis of the frequency-
domain method is a sufficient and necessary condition for the
stability of a linear system. The roots of the characteristic
equations are located in the left half of the complex plane.
However, the system equation obtained by Laplace transfor-
mation is a transcendental equation that is difficult to solve,
especially when the time delay varies with time or when un-
certainties exist in the system. Current research on frequency-
domain methods focuses on analyzing and synthesizing fixed
time-delay systems; among these, the most successful methods
are the DDE-BIFTool [9] and spectral method [10], which can
handle large-scale systems. The frequency-domain synthesis
methods include the lead-lag compensation method, lineariza-
tion method based on the Pade equation, Dahlin algorithm for
PID, Smith algorithm [11], and spectral method [12]. These
methods can only handle fixed time delays with low accuracy
and, thus, their practical application is significantly limited.

In contrast, time-domain methods are based on the stabil-
ity theorems of Lyapunov–Krasovskii (L–K) and Rzumishin,
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which involve constructing the appropriate Lyapunov or L–
K functional for delay-dependent stability and applying the
linear matrix inequality (LMI) technique. The widely used
methods in this field are the model transformation methods and
free-weighting-matrix methods. Existing model transformation
methods primarily focus on the bounding of the cross terms
that appear in the L–K functional derivatives and applying
Park’s inequality and Moon’s inequality to estimate the bounds
of the cross terms to reduce the conservativeness of the meth-
ods. The weight matrices introduced by the model transforma-
tion method are fixed, leading to its greater conservativeness.
The free-weighting-matrix (FWM) method addresses this issue
by replacing the weight matrices containing state variables,
such as, x(t), ẋ(t) and x(t − d), in the L–K functional
with free-weight matrices composed of adjustable elements.
Introducing a higher number of free-weight matrices improves
the estimation accuracy of the time-delay upper bound. The
FWM method and its improved variations have obtained the
best results reported thus far. Through the cone complement
linearization (CCL) algorithm, the FWM method can be used
for controller synthesis, as well as controller performance anal-
ysis [13], [14]. The FWM method has also been widely applied
for the wide-area control of power systems. For example,
Ma et al. [15] used the FWM method for the delay-stability
performance analysis of an HVDC supplemental controller.
Li et al. [16] and Yong et al. [17] applied the FWM method
to design a time-delay state feedback controller for HVDC
supplemental control and wide-area control.

However, although the introduction of FWMs greatly re-
duces the conservativeness of the delay-stability analysis, it
also greatly increases the scale of the system LMIs, making it
particularly difficult to generalize the method to large-scale
systems. Its controller design method, based on the CCL
algorithm, is a local optimization method with conservative
effects. To reduce the conservativeness of the delay-stability
criteria and the number of decision variables, criteria based
on Jensen’s inequality and Wirtinger’s inequality have been
widely studied. Jensen’s inequality has attracted considerable
attention owing to its low conservativeness and low number
of decision variables required. Jensen’s integral inequality was
extended to time-delay systems [18], [19] and has been applied
to construct the time-delay stability criteria based on the L–K
functional [20]–[23]. According to the above reports, Jensen’s
method can account for the interval delay and time-varying
delay with few decision variables and obtain less conservative
results. It can achieve a calculation accuracy comparable to
that of the FWM method, with a much higher computational
efficiency.

The state-space equations of power systems are large-scale.
A simple 4-machine 2-zone system model has nearly 100
state equations. According to our statistics, the current com-
putational data of the Chinese interconnected power system
consists of up to 80,000 nodes and the order of the state
equation is approximately 50,000. Although the controller
can be designed on a reduced-order system using the model
reduction method, it is still difficult to apply the FWM method
for analysis, even for small-scale power systems, owing to the
large number of additional variables introduced. Moreover,

it is found that applying the FWM method to systems that
exceed 40 orders is impossible. The required decision variables
based on Jensen’s inequality are significantly reduced while
retaining relatively high accuracy; however, when conducting
output-feedback controller design, the matrix inequality to be
solved involves the product term of two unknown matrices
because the controller parameters are unknown; thus, bilinear
matrix inequality is introduced, which is an NP-hard problem.
Therefore, time-delay control synthesis based on Jensen’s
inequality method is very difficult compared to the FWM
method, which can apply the very effective CCL algorithm.
Thus far, controller synthesis methods, based on Jensen’s
inequality, have not been proposed.

The static output feedback (SOF) or dynamic output feed-
back (DOF) controller synthesis process introduces bilinear
matrix inequalities; solving these is an NP-hard problem,
which is challenging to address. However, if the controller
is obtained by a randomly generated method, the problem can
be transformed into the LMI form. The time-delay stability
of the closed-loop system can be checked using the LMI
techniques. The maximum allowable delay bound (MADB)
can be determined by increasing the time-delay upper bound
until the closed-loop system loses its stability. This is the
current foundation of applying stochastic methods to design
SOF/DOF controllers [24], [25], but it is less efficient as there
is no optimization process, which is a typical “generation-
check” idea of the stochastic method. Given the efficiency of
the differential evolution (DE) algorithm in solving nonlinear
and nonconvex problems, it is expected that the efficiency of
the design method can be increased by introducing the DE
algorithm to provide the optimized search direction, and better
controller parameters can be obtained.

In this study, the Jensen’s inequality method is extended
to design a time-delay controller for the wide-area control
system, and a DE-LMI hybrid algorithm is applied to acquire
the SOF/DOF controller parameters, so as to reduce the
conservativeness and improve the computational efficiency.

The remainder of this paper is organized as follows. Sec-
tion II presents the theoretical basis of Jensen’s inequality
time-delay stability analysis method. Section III presents the
establishment of the output-feedback controller design method
by using the Jensen’s inequality and DE algorithm. The algo-
rithm flow for the proposed method is illustrated in Section IV.
The validity of the proposed method is verified by three
numerical simulation examples presented in a case study in
Section V. The conclusion is presented in Section VI.

II. THEORETICAL BASIS

A. Problem Description

The state equation of a hybrid AC/DC system considering
the signal transmission delay can be expressed as follows:

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t− d(t))

x(t) = φ(t),−h ≤ t ≤ 0

(1)

where x(t) ∈ Rn is the state variable, n is a positive integer,
A, B, and C are constant matrices of suitable dimensions, h is
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the upper bound of the time delay, and d(t) is a delay-varying
function.

The following dynamic output-feedback control law is ap-
plied to (1):

Ks :

{
η̇(t) = Akη(t) +Bky(t)

u(t) = Ckη(t) +Dky(t)
(2)

where Ak ∈ Rnk×nk , Bk ∈ Rnk×ny , Ck ∈ Rnu×nk , and
Dk ∈ Rnu×ny . Here, Ks can be chosen as a reduced-order
controller (nk < nx) or a full-order controller (nk ≥ nx).

If xc =

[
x
η

]
, the closed-loop system can be written as

follows:

ẋc(t) = Acxc(t) +Adcxc(t− h) (3)

where

Ac =

[
A BCk

0 Ak

]
= A+BKC,

Adc =

[
BDkC 0
BkC 0

]
= BKC, (4)

A =

[
A 0
0 0

]
, B =

[
B 0
0 I

]
,

C =

[
C 0
0 I

]
, K =

[
Dk Ck

Bk Ak

]
(5)

B. Main Lemma

Consider the following time-delay state-space equations:

ẋ(t) = Ax(t) +Adx(t− d(t)), t > 0, (6)
x(t) = ϕ(t), t ∈ [−h, 0], (7)

0 < d(t) < h, ḋ(t) ≤ µ. (8)

where Ad is a constant matrix of suitable dimensions and µ
is a constant scalar that indicates the upper bound of the rate
of change of the time delay.

Lemma 1 (Jensen’s integral inequality). for any symmetric
positive definite matrix M ∈ Rn×n, scalar r1 and r2 satisfy-
ing r1 < r2, vector function ω[r1, r2] → Rn, the following
integral inequality holds:(∫ r2

r1

ω(s)d(s)

)T

M

(∫ r2

r1

ω(s)d(s)

)
≤ (r2 − r1)

∫ r2

r1

ωT(s)Mω(s)d(s) (9)

Lemma 2 (time-delay stability criterion based on Jensen’s
integral inequality). given scalars h > 0 and µ, if there exist
symmetric matrices P = PT > 0, Q = QT ≥ 0, S = ST >
0, and V = V T > 0, such that the following LMI holds:

Ψ1 = Ψ− [I − I 0]
T
V [I − I 0] < 0, (10)

Ψ2 = Ψ− [0 I − I]
T
V [0 I − I] < 0 (11)

where

Ψ =

Ψo PAd + V 0
∗ −(1− u)Q− 2V V
∗ ∗ −S − V



+ [A Ad 0]
T (

h2V
)
[A Ad 0]

Ψo =PA+ATP +Q+ S − V (12)

Then, the linear system with time-varying time delay de-
scribed by (6)–(8) is asymptotically stable. The proof is
provided in Appendix A.

III. DELAY-DEPENDENT STABILITY SYNTHESIS
ALGORITHM BASED ON JENSEN’S INTEGRAL INEQUALITY

AND DE-LMI ALGORITHM

A. Research Approach

After obtaining Ac and Adc of the closed-loop system,
Lemma 2 still cannot be applied directly to obtain the output-
feedback controller owing to the following three problems:

1) In closed-loop systems, (6) and (7) contain product terms,
such as PAdc and h2AcRAdc, which consist of two or three
unknown matrices. They are nonlinear matrix inequalities that
cannot be solved by linear matrix methods.

2) Lemma 2 can only judge whether a time-delay system is
stable for a given time delay and its maximum rate of change;
it cannot provide the MADB for a given feedback control
law directly (the MADB is an important performance index to
evaluate the effectiveness of controller synthesis methods).

3) The MADB of initially generated controllers does not
necessarily meet the requirements and the above lemmas do
not aid the optimization of the MADB.

To address these problems, this method first randomly
generates a series of controllers Ks, such that at most one
unknown matrix will appear in (6) and (7), which can thus
be solved by applying the LMI algorithm. The MADBs of
the randomly generated controllers Ks can be determined
by iteratively checking Lemma 2 using the bisection search
method. To optimize the controller performance, the DE
algorithm is applied to generate a new generation of controllers
to be tested and the optimized controllers are obtained via
iterative computations. Fig. 1 shows a flowchart of the time-
delay-dependent stable synthesis algorithm applying Jensen’s
inequality and DE-LMI.

B. Random Generation Method for Controller

The controller matrix Ks is expressed as:

Ks =


k11 k12 · · · k1(ny+nk)

k21 k22 · · · k2ny(ny+nk)

...
...

. . .
...

k(nu+nk)1 k(nu+nk)2 · · · k(nu+nk)(nu+nk)


(13)

Because the DE algorithm can only optimize one-
dimensional vectors, matrix Ks is converted to the following
one-dimensional row vector K:

K =
[
k11 k12 . . . k1(ny+nk) k21 . . . k(nu+nk)(ny+nk)

]
=

[
k1 k2 . . . kny kny+nk+1 . . . k(nu+nk)(ny+nk)

]
(14)

The above vector can be expressed as:

K = {(k1, k2, . . . , knv
) | 1i ≤ ki ≤ ui,
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Fig. 1. Flow chart of proposed algorithm.

nv = (nu + nk)× (ny + nk)} (15)

Suppose that the value range of element ki of vector K
is [kimin, kimax], and that an initial population of controllers
with Np individuals is randomly generated using the following
rules: {

Kg
ij = kmin + rand() · (kmax − kmin)

i = 1, 2, · · · , NP; j = 1, 2, · · · , nv

(16)

where Kg
ij denotes the j-th dimensional component of the

i-th individual of the controller in the g-th generation; Np

is the population size, which is the number of controllers to
be tested in this generation; the rand() function produces a
random number in the interval [0, 1], and Kg

i denotes the i-th
individual of the controller in the g-th generation. The value
range of the element ki can be determined according to the
prior knowledge of the controller. It can also be determined
using a “trial and error” method, i.e., testing the following
value ranges in turn: −10–10, −102–102, · · · , −10n–10n. In
most cases, only a few attempts are required to determine the
correct value range.

C. Search Method for the Upper Bound of the Time-Delay
Stability

After obtaining the controller with the random generation
method, (6) and (7) still contain product terms, such as
h2AcRAdc, which are still nonlinear matrix inequalities.
However, because the unknown variable h is one-dimensional,

the MADB can be obtained by the search method. To improve
the efficiency of the search, the bisection search method is used
as follows:

Step 1: Set the step size ∆h, the maximum number of
iterations Iter max, and the error limits εh; the time-delay
feasible value is set as hf = 0, the time delay range is set as
hmax = 0 and hmin = 0, and Iter = 0.

Step 2: Convert the given individual parameters Kg
i of

the i-th controller of this generation into a matrix K =
[Dk Ck; Bk Ak] and calculate Ac and Adc of the closed-
loop system.

Step 3: Let htest = hf +∆h; solve LMIs (6) and (7) based
on the given Ac, Adc, and htest. If feasible, move to Step 4;
otherwise, proceed to Step 5.

Step 4: Set hf = htest, hmin = htest and htext = 2× hf , then
move to Step 6.

Step 5: Set hmax = htest and htest = (hmax + hmin)/2.
Step 6: Set Iter = Iter + 1; if Iter ≤ Itermax, hgap = |hmax−

hmin| ≥ εh, or hf ≤ Tdexpect, return to Step 3; otherwise,
proceed to Step 7.

Step 7: Output the upper limit of time delay Tdmax = hf ,
and end the computation.

D. Objective Function

To apply the DE algorithm to find a better controller, the
objective function Obj(K) needs to be defined to evaluate the
performance of each controller K to be selected. For time-
delay control systems, the most reasonable method is to use
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the MADB of the closed-loop system as the optimization
objective. However, the computation of the upper bound of
the time delay of the control system is very time-consuming,
and if the upper bound is calculated for each selected con-
troller, the solution process will be very long. Such a solving
process would also lead to redundancies, as some randomly
generated controllers are unstable when they are incorporated
into closed-loop operations, even without time delay. It is also
unnecessary to calculate the time delay upper bound for this
part of the controllers. The stability of the closed-loop system
when there is no time delay can be determined by finding
the rightmost eigenvalue σmax of the closed-loop system; the
system is stable when σmax < 0. The eigenvalues of the
closed-loop system can be obtained using MATLAB’s eig or
eigs functions, which are reliable, with high computational
efficiency, and can be used for large-scale systems. Based
on this, the time delay upper bounds are calculated only for
controllers with σmax smaller than 0. This can greatly reduce
the number of controllers to be tested for the upper bound of
the time delay and speed up the solving process.

The objective function is derived as follows.
Step 1: Find the closed-loop system without a time delay

and its rightmost eigenvalue σmax.
Step 2: If σmax < 0, apply the bisection search method to

iteratively check Jensen’s inequality criterion and find Tdmax

such that Obj = −Tdmax; otherwise, set Obj = σmax.

E. Controller Optimization Algorithm

In this study, we apply the mutation, crossover, and selection
operations of the DE algorithm to create a new generation
of controllers to be tested, providing search directions for
optimizing controller performance.
1) Mutation Operation

The mutation operation generates the target individuals of
the next generation by selecting three different individuals
from the controller individuals of the current generation for
the difference operation. The target controller individual for
the mutation operation on the current generation is denoted
by kgi (g-generation). Three different individuals (kgr1, k

g
r2, k

g
r3)

are randomly selected from the current generation population
of controllers to create the next generation of individuals k̂g+1

i

as follows:

k̂g+1
i = kgr3 + F(kgr1 − kgr2) (17)

where r1, r2, and r3 ∈ {1, 2, · · · , NP} are distinct integers
that are different from the current target vector index i, thus
the population size NP ≥ 4. F is the scaling factor, which has
values in the range of [0, 2] and is used to adjust the degree
of scaling of the difference vectors.
2) Crossover Operation

The crossover operation is performed by randomly selecting
two individuals (kgi , kgl ) from the population of controllers of
the current generation and replacing the components of kgl (l
is a subscript index different from i) with the corresponding
component in the target individual kgi , thus generating a new
generation of individuals k̂g+1

i to be selected. To ensure the
evolution of the individuals kgi , at least one component of k̂g+1

i

is randomly selected from kgl . For the other components, the
crossover probability factor CR is used to determine whether
the component of k̂g+1

i is from kgl or kgi . The crossover
operation is performed as follows:

k̂g+1
ij =

{
kglj , rand() ≤ CR or j = randi(nv)

kgij , rand() > CR and j ̸= randi(nv)
(18)

where rand() ∈ [0, 1] is a uniformly distributed random
number, j denotes the j-th variable, CR is a predetermined
crossover probability constant that takes values in the range
[0, 1], and randi(nv) ∈ [1, 2, · · · , nv] is the index of the
randomly selected dimensional variables.
3) Selection Operation

The selection operation determines whether the controller
individuals generated by mutation and crossover can enter the
new generation population. The test individuals kgi and k̂g+1

i ,
which are generated by mutation and crossover operations,
will compete with each other; when the fitness value of k̂g+1

i

is equal to or better than kgi , it will be selected as the new
generation individual kg+1

i ; otherwise, kgi is selected directly
as the offspring.

kg+1
i =

{
k̂g+1
i , Obj(k̂g+1

i ) ≤ Obj(kgi )

kgi , Obj(k̂g+1
i ) > Obj(kgi )

(19)

IV. ALGORITHM FLOW

Based on the above ideas and results, the complete steps of
the time-delay stability synthesis algorithm for power systems
using Jensen’s integral inequality and the DE-LMI are shown
in Fig. 1.

Step 1: Input power system model state-space model pa-
rameters A, B, C, D; set the dimensions of input and
output signal nu, ny; set controller orders nk; set number of
decision variables nv = (nu + nk)× (ny + nk); initialize DE
parameters (including scaling factor CF , crossover probability
CR, population size NP); set maximum number of iterations
gmax and iteration error limits ε; set g = 1.

Step 2: Randomly generate the initial population K ∈
RNp×Id of controllers Ks, whose i-th row vector Ki rep-
resents the i-th controller individual.

Step 3: Transform the NP individuals Ki into the controller
state-space matrix Ks i and generate the closed-loop system
matrix Aci, Bci, Cci, and Dci without time delay.

Step 4: Check whether the rightmost eigenvalue of each Aci

lies in the left half-plane; if so, proceed to Step 5; if none of
the Aci of the NP individuals in this generation satisfy this,
return to Step 2.

Step 5: Using Jensen’s inequality criterion with the bisection
search method, compute the MADB Tdmax i corresponding
to each individual. Obtain the optimal individual of this
generation, Kg

best and T g
dmax.

Step 6: Perform crossover, mutation, and selection oper-
ations among the NP individuals in the current generation
to create the next generation of individuals Kg+1

i , and set
g = g + 1.

Step 7: If g ≤ gmax or |T g+1
dmax − T g

dmax| ≥ ε, return to Step
3; otherwise, proceed to Step 8.
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Step 8: Output the optimal solution T g
dmax and the corre-

sponding controller matrix Kg
best and end the computation.

V. CASE STUDY

A. Case 1: Single Machine Infinite Bus System

The effectiveness of the method is verified using a single
machine against an infinite bus system. The wiring diagram
and parameters can be found in [26]. The case can be described
by the following fourth-order state-space equation, with the
following system matrices:

A =


0 314.00 0 0

−0.1445 0 −0.0976 0
−0.2082 0 −0.4633 0.1667
34.0970 0 −525.4400 −20.00

 (20)

B =


0
0
0

1000

 , C =

[
1 0 0 0
0 1 0 0

]
(21)

When no control is applied, the following weak damped
oscillation mode exists in the system: −0.0207 ± 4.7609i, with
a damping ratio of approximately 0.4350% and an oscillation
frequency of 0.7577 Hz. The controller design goal is to
maximize the allowable delay bound of the closed-loop system
with the output signal transmission time delay (assuming a
time-delay rate of change µ = 0.001).

A SOF controller and a 4-th order DOF controller were
designed using the FWM method and the proposed Jensen’s
method, respectively. The parameters used in the test for
Jensen’s method are as follows: DE algorithm population size
Np = 40, number of decision variables Nv = 2, scaling
factor F = 0.85, crossover probability CR = 1.0, maximum
population size gmax = 20, iterations number of bisection
search method Iter max = 10, and error limit ε = 0.001. The
maximum number of iterations for the FWM method is set
to 20. The test computer is equipped with an Intel i7-6500U
CPU at 2 × 2.50 GHz and 8.00 GB of memory.

To verify the actual MADB value of the closed-loop system,
the corresponding system models are established in Simulink,
and the MADB is calibrated using time-domain simulations
using the time-delay scanning method. All the results of the
controller performance analysis are shown in Table I.

As can be seen from Table I, Jensen’s method requires
4.6494 s and 148.4590 s to find the static and 4-th or-
der dynamic output-feedback controllers, respectively, while
the FWM method requires 139.4592 s and 830.3688 s, re-
spectively. Moreover, the computation time required for the
Jensen’s method is only 3.3–17.9% of that for the FWM

method, thereby exhibiting an advantage in terms of compu-
tational efficiency. For the upper limit of the allowed time-
delay estimation, the static and dynamic controllers given by
the Jensen’s method are 0.1406 s and 0.1667 s, respectively,
while those given by the FWM method are 0.1563 s and
0.1875 s, respectively, indicating that the estimation accuracy
of the FWM method is higher than that of the Jensen’s method.

It can also be seen from Table I that when a static out-
put controller designed via the Jensen’s method is applied,
the MADB of the closed-loop system estimated by Jensen’s
method and time-domain simulation is 0.1406 s and 0.2050 s,
respectively, indicating that the estimation accuracy of the
Jensen’s method is approximately 68.58%. With a 4-th order
DOF controller, the MADB estimated by the Jensen’s method
and time-domain simulation is approximately 0.1667 s and
0.2560 s, respectively, with an estimated accuracy of approx-
imately 65.12%.

As for the FWM method, when a static output controller
designed via it is applied, the MADB given by the FWM
method and time-domain simulation is 0.1563 s and 0.2010 s,
respectively, indicating that the estimation accuracy of the
FWM method is approximately 77.76%. When a 4-th order
DOF controller is used, the MADB estimated by the FWM
method and time-domain simulation method is approximately
0.1875 s and 0.2460 s, respectively, with an estimated accuracy
of approximately 76.22%.

The closed-loop system outputs of the 4-th order DOF
controllers designed using the Jensen’s method and the FWM
method at different input time delays are shown in Figs. B1
and B2 in Appendix B. From the figures, it can be seen
that when the controller designed via Jensen’s method is
applied, the system oscillations are quickly smoothed out and
the system damping is greatly improved when there is no
transmission time delay or a small transmission time delay
(Td ≤ 0.1 s) in the output signal of the controllers. For the
controller designed via the FWM method, the output is weakly
damped even when Td ≤ 0.1 s. Apparently, the controllers
designed using the Jensen’s method achieves a more excellent
performance.

It can be concluded from this implementation that although
the Jensen’s method is less accurate than the FWM method
for estimating the MADB, it requires fewer decision variables,
is more than five times faster than the FWM method and,
ultimately, has better performance than the FWM method
because more potential allowable time-delay upper bounds of
the controllers can be tested in a short time period.

B. Case 2: Time Delay Stability Synthesis of a 4-machine 2-
area 1-DC System

The test system is the well-known 4-machine 2-area system,

TABLE I
COMPARISON OF CONTROLLER PERFORMANCE OF CASE 1

Od Jensen’s Method FWM Method
nk MADB c (s) MADB v (s) Comp Time (s) MADB c (s) MADB v (s) Comp Time (s)
0 0.1406 0.2050 4.6494 0.1563 0.2010 139.4592
4 0.1667 0.2560 148.4590 0.1875 0.2460 830.3688

Note: Od = Order of controller; MADB c = computation value of MADB; MADB v = verified value of MADB; CompTime = computation time.
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which is designed following the procedure reported in [27].
The final system structure is shown in Fig. 2. The effect of the
time delay on the system stability can be observed by applying
a time delay at the output of the HVDC supplementary con-
troller. The following fault is applied to verify the controller
performance: a three-phase short-circuit ground fault is applied
at bus 8 at 1 s, and the breakers on both sides of one of the
lines from bus 8 to bus 9 are tripped at 1.1 s.

A 9-th order state-space model is obtained by the system
identification method. Two weakly damped oscillation modes
exist in the open-loop system: −0.0207 ± 4.7609i with a
damping ratio of approximately 0.4350% and an oscillation
frequency of 0.7577 Hz. The MADB was calculated for Case
2 using both the proposed method and the FWM method. The
Case 2 model was also established in Simulink and the time
delay was gradually increased in steps of 10 ms at the output
signal of the controller to observe the stability of the system
after the fault was applied. The corresponding calculation
results are presented in Table II.

From Table II, it can be seen that when a static output con-
troller is used, the MADB provided by the FWM method and
time-domain simulation is 0.3000 s and 0.3427 s, respectively,
with an estimated accuracy of approximately 87.54%. When
a 3rd-order dynamic output controller is used, the MADB
provided by the FWM method and time-domain simulation is
0.4500 s and 0.4939 s, respectively, with an estimated accuracy
of approximately 91.11%.

When a static output controller is used, the upper limit
of the time delay presented by the FWM method and time-
domain simulation is 0.3000 s and 0.3970 s, respectively, with
an estimation accuracy of approximately 80.50%. When a
dynamic output controller of order 3 is used, the upper limit
of time delay given by the FWM method and time-domain
simulation is 0.4500 s and 0.5030 s, respectively, with an
estimation accuracy of approximately 89.46%.

Figure 3 shows the closed-loop system output results of
the controller proposed in this study for different time delays.
These results reveal that the stability of the system with output
signal time delays is significantly improved by the method
established in this study. Furthermore, both methods can
evidently be used to design controllers that can endure longer
signal transmission time delays. The FWM method is more
accurate and less conservative in estimating the upper bounds
of time delay, but it is much more computationally intensive
than the Jensen’s method. For the time delay controllers with
the same order, the FWM method gives better estimations of
MADB than the Jensen’s method in this case. However, when
we check the estimation value given by the two methods via
the time domain simulation method, it shows that the Jensen’s
method achieves a higher MADB.

C. Case 3: Time-Delay Stability Synthesis of 29-bus 7-
machine 3-DC System

This case was established, as reported in [28], with the
Canadian 735 kV equivalent network, which is a pure AC
system with 29 buses and 7 machines, with a 26,200 MW
system unit capacity and 23,000 MW load. This system
contains multiple components, including series compensation,
high-voltage resistance, and wind power. It is a typical 2-
sender 2-receiver system, similar to the grid structure of the
China Southern Grid and Brazil Grid. To study the effect
of the proposed method on the hybrid AC/DC system, three
HVDC circuits were added to the original network, with
the following specifications and locations (see Fig. 4): i) ±
500 kV/1000 MW between bus LG27 and bus MTL7; ii) ±
500 kV/500 MW between bus CHU7 and bus QUE7; iii) ±
500 kV/500 MW between bus CHU7 and bus QUE7.

The relative angular speed output vectors U of units G4,
G6, and G7 were obtained by adding a random perturbation
signal vector Y at each DC, and the 16th order state-space

DC:200MW

AC:300MW
C1

L1

G2

G1

1 5 11 3
6 10

7 9

G4

G3

L2

C2

8

2 4

Fig. 2. Schematic of the 4-machine-2-area-1-DC hybrid system used in this study.

TABLE II
COMPARISON OF CONTROLLER PERFORMANCE OF CASE 2

Od Jensen’s Method FWM Method
nk MADB c/s MADB v/s Comp.Time/s MADB c/s MADB v/s Comp. Time/s
0 0.3000 0.3970 1.3311 0.3427 0.3870 153.2881
3 0.4500 0.5030 9.6533 0.4500 0.4940 1869.6581

Note: Od = Order of controller; MADB c = computation value of MADB; MADB v = verified value of MADB; CompTime = computation time.
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Fig. 3. Time-domain simulation results of DOF controller obtained using
Jensen’s method (Case 2).

equations with three inputs and three outputs were obtained
via the identification method.

When there is no supplement control applied to the HVDCs,
the rightmost pole of the system is −0.1669±4.3574i, which
is a weakly damped oscillatory mode, with a damping ratio of
3.83% and a frequency of 0.6935 Hz.

The Jensen’s method and the FWM method were used to
design the 16-th DOF time-delay stabilization controller, and
the results are presented in Table III. For this 16-th order
system, the FWM method was unable to find a convergent

TABLE III
DOF CONTROLLER DESIGN RESULT IN CASE 3

Method MADB/s CompTime Check
Jensen 0.6100 3056.0374 0.8000
FWM Fail

solution after multiple attempts.
In contrast, the Jensen’s method found a controller with

an MADB of 0.6100 s on the time delay after 3056.0374 s,
and the time-domain simulation verified the upper bound of
0.8000 s.

Fig. B3 in Appendix B shows the angular speed of the
closed-loop system units G1, G4, and G7 for different time de-
lays with the controller proposed in this study. From Fig. 9(a)
and (b), it can be seen that the designed controller significantly
improves the stability of the system in the presence of a time
delay in the input signal, and the disturbance to the system
by the fault is smoothed out more quickly than the condition
without controller.

Table IV presents the results of the system damping ratio
based on the angular speed signals of units for the closed-
loop system with different time delays by applying the TLS-
ESPRIT method. It is evident from the table that the damping
ratio of the closed-loop system decreases as the time delay
increases, and when the time delay is increased to 0.5000 s,
the damping of the closed-loop system is essentially the same
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Fig. 4. Schematic of the 29-bus7- machine 3-DC system used in this study.
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TABLE IV
EFFECT OF TIME DELAY ON DAMPING OF CLOSED-LOOP SYSTEM

Time delay (s) Damping ratio Time delay (s) Damping ratio
0 10.97% 0.5000 3.50%
0.1000 10.72% 0.6000 2.10%
0.2000 9.39% 0.7000 1.21%
0.3000 8.92% 0.800 0.50%
0.4000 6.65% –

as that of the open-loop system. As the time delay continues to
increase, the controller negatively affects the performance of
the closed-loop system. When the time delay exceeds 0.8000 s,
the damping ratio of the closed-loop system becomes lower
than that of the open-loop, and the angular speed signals start
to oscillate. As the time delay increases further, the oscillations
increase, and the system loses stability. The simulation results
indicate that the controller designed based on the Jensen’s
method has strong anti-delay ability.

VI. CONCLUSION

A time-delay-dependent wide-area damping controller syn-
thesis approach, which is based on the delay-stability criterion
via Jensen’s inequality, and using the DE and LMI hybrid
algorithms as the solution tool, is developed in this study.
The method is characterized by fewer decision variables and
greater computation efficiency, achieving a higher upper limit
of delay stability than that of FWM method. The examples
show that the proposed method can be applied to large-scale
delay systems, especially for controller synthesis controlling
high-dimensional systems, such as the wide-area control of
power systems. Based on the DE-LMI hybrid solution frame-
work, the method can also be extended to the H∞ and H2

synthesis of the delay system.

APPENDIX

A. Proof of Lemma 2

PROOF: The Lyapunov function is defined as:

V (xt) = xT(t)Px(t) +

∫ t

t−d(t)

xT(s)Qx(s)ds

+

∫ t

t−h

xT(s)Sx(s)ds+

∫ 0

−h

∫ t

t+θ

hẋT(s)V ẋ(s)dsdθ

(A1)

In the above equations, xt = x(t + θ) and −2h ≤ θ ≤ 0.
The derivative of the Lyapunov function of the above equation
yields:

V̇ (xt) = 2x(t)TP (Ax(t) +Adx(t− d(t)) + x(t)TQx(t)

+ x(t)TSx(t)− (1− u)x(t− d(t))TQx(t− d(t))

− x(t− h)TSx(t− h) + (Ax(t)

+Adx(t− d(t))T(h2V )(Ax(t) +Adx(t− d(t))

−
∫ t

t−h2

hẋ(t)TV ẋ(t)dt (A2)

where

−
∫ t

t−h

hẋ(t)TV ẋ(t)dt =

−
∫ t−d(t)

t−h

(h− d(t))ẋ(t)TV ẋ(t)dt

−
∫ t−d(t)

t−h

d(t)ẋ(t)TV ẋ(t)dt

−
∫ t

t−d(t)

d(t)ẋ(t)TV ẋ(t)dt

−
∫ t

t−d(t)

(h− d(t))ẋ(t)TV ẋ(t)dt (A3)

Let β = d(t)/h, then

−
∫ t−d(t)

t−h

d(t)ẋ(t)TV ẋ(t)dt

= −β

∫ t−d(t)

t−h

hẋ(t)TV ẋ(t)dt

≤ −β

∫ t−d(t)

t−h

h− d(t))ẋ(t)TV ẋ(t)dt (A4)

Furthermore,

−
∫ t

t−d(t)

h− d(t))ẋ(t)TV ẋ(t)dt

= −(1− β)

∫ t

t−d(t)

hẋ(t)TV ẋ(t)dt

≤ −(1− β)

∫ t

t−d(t)

d(t)ẋ(t)TV ẋ(t)dt (A5)

From Lemma 1,

−
∫ t

t−h

hẋ(t)TV ẋ(t)dt ≤

− (x(t− d(t))− x(t− h))TV (x(t− d(t))− x(t− h))

− (x(t)− x(t− d(t)))TV (x(t)− x(t− d(t)))

− β(x(t− d(t))− x(t− h))TV (x(t− d(t))− x(t− h))

− (1− β)(x(t)− x(t− d(t)))TV (x(t)− x(t− d(t)))
(A6)

From (A1)–(A6), we have

V̇ (xt) ≤
x(t)T

[
PA+ATP +Q+ S +AT(h2V )A

]
x(t)

+ 2x(t)T
[
PAd +ATP +AT(h2V )Ad

]
x(t− d(t))

+ x(t− d(t))T
[
−(1− µ)Q− 2V +AT

d (h
2V )Ad

]
· x(t− d(t))

+ 2x(t− d(t))TV x(t) + 2x(t− d(t))TV x(t− h)

− x(t)T(V )x(t)− x(t− h)T(S + V )x(t− h)

− β(x(t− d(t))− x(t− h))TV (x(t− d(t))− x(t− h))

− (1− β)(x(t)− x(t− d(t)))TV (x(t)− x(t− d(t)))

= ζ(t)TΨζ(t)− β(x(t− d(t))− x(t− h))T

· V (x(t− d(t))− x(t− h))

− (1− β)(x(t)− x(t− d(t)))TV (x(t)− x(t− d(t)))

= ζ(t)T[(1− β)Ψ1 + βΨ2]ζ(t) (A7)

The definition of the above equation Ψ, Ψ1, and Ψ2 are
described in Lemma 2.
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We can also write:

ζ(t) =
[
x(t)T x(t− d(t))T x(t− h)T

]
(A8)

Because 0 ≤ β ≤ 1, the derivative of the energy function
in (1−β)Ψ1+βΨ2 is a convex combination. Thus, it can be
concluded that the system is asymptotically stable when Ψ1

and Ψ2 are negative.

B. Attached Figures
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Fig. B1. Time-domain simulation results of the 4th order DOF controller
obtained using Jensen’s method (Case 1).
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Fig. B2. Time-domain simulation results of the 4th order DOF based on the FWM method (Case 1).
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Fig. B3. Time-domain simulation results of DOF controller based on Jensen’s method (Case 3).
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